
Building an Email
Client from Scratch

Stuart Ashworth
Sencha MVP

PART 1

This e-book series will take you through the process of building an email client from scratch,

starting with the basics and gradually building up to more advanced features.

By the end of all the 7 series, you will have a fully functional email client that is ready to be

deployed in production and used in your daily life. So, get ready to embark on an exciting

journey into the world of email client development, and buckle up for an immersive learning

experience!

PART 1: Setting Up the Foundations
Creating the Application and Setting up Data Structures and Components for Seamless Email
Management

PART 2: Adding Labels, Tree and Dynamic Actions to Enhance
User Experience
Building a Dynamic Toolbar and Unread Message Count Display for Label-Based Message
Filtering

PART 3: Adding Compose Workflow and Draft Messages
Streamlining Message Composition and Draft Editing for Seamless User Experience.

PART 4: Mobile-Optimized Email Client with Ext JS Modern Toolkit.
Creating a Modern Interface for Mobile Devices using Ext JS Toolkit

PART 5: Implementing a Modern Interface with Sliding Menu &
Compose Functionality
Implementing Modern toolkit features for the Email Client: Sliding Menus, Compose Button,
Forms, etc.

PART 6: Integrating with a REST API
Transitioning from static JSON files to a RESTful API with RAD Server for greater scalability and
flexibility

PART 7: Adding Deep Linking and Router Classes to the Email
Client Application

Integrating Deep Linking with Ext JS Router Classes for Improved Application Usability

2

Building an Email Client from Scratch - Part 1

Start with Part-1 and work your way through each subsequent series in order. Each
series builds upon the previous one and assumes that you have completed the previous
part.

As you read each series, follow along with the code examples in your own development
environment. This will help you to better understand the concepts and see how they
work in practice.

Take breaks and practice what you have learned before moving on to the next series.
This will help to reinforce your understanding of the concepts and ensure that you are
ready to move on to the next step.

Don’t be afraid to experiment and customize the code to meet your own needs. This will
help you to better understand the concepts and make the email client your own.

If you encounter any issues or have any questions, don’t hesitate to reach out to the
community or the authors of the articles. They will be happy to help you and provide
guidance along the way.

Once you have completed all the series, take some time to review the entire email client
application and make any necessary adjustments to fit your specific needs.

Finally, enjoy the satisfaction of having built your own fully functional email client from
scratch using Ext JS!

Tips for using this e-book

1
2
3
4
5
6
7

3

Building an Email Client from Scratch - Part 1

4

Building an Email Client from Scratch - Part 1

Table of Contents

Executive Summary

Application Home Screen - Final Outcome

Let’s Get Started

Application Structure

Setting up Static Data Sources

Data Models

Data Stores

Creating Common View Controller

Creating Common View Model

Message Store

Creating the Messages Grid

Columns

Binding a Data Store

Styling a Specific Rows

Creating the Message Reader

Showing the Message Details

Creating a Dynamic Toolbar

Summary

Try Sencha Ext JS free for 30 Days

5

6

8

9

11

12

17

21

23

25

26

27

30

31

33

35

38

42

44

5

Building an Email Client from Scratch - Part 1

Key Concepts / Learning Points
• Structuring a Universal Application.

• Modelling simple data structures.

• Using data bindings and events.

• Creating a grid, a templated component, and a toolbar.

Executive Summary
In this e-book, we will demonstrate how to lay the foundations for creating a well-structured

and maintainable universal Ext JS application. Throughout the series, we will be building

an Email Client that will allow users to view messages, perform actions on those messages,

navigate message folders, and send new messages.

By the end of this e-book, we will have created a new application and set up the data structures

that will support the rest of the application build. We will create simple Message Grid and

Message Reader components that will be bound directly to these data structures. Some basic

user interaction will be handled to allow navigation between the grid and the reader.

Code along with Stuart!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Start buddy coding with Stuart on-demand!

https://www.youtube.com/watch?v=-VF279ykDVQ
https://www.youtube.com/watch?v=-VF279ykDVQ
https://www.youtube.com/watch?v=-VF279ykDVQ
https://www.youtube.com/watch?v=-VF279ykDVQ

6

Building an Email Client from Scratch - Part 1

Application Home Screen - Final Outcome
We can see how the application will look in the screenshots below, along with the Modern

toolkit version of the application which we will develop later in the series.

Desktop Version

Ext Mail’s compose window

Ext Mail application’s home screen.

7

Building an Email Client from Scratch - Part 1

Mobile Version

Ext Mail’s Modern Toolkit interface

Components and data will be linked with bindings and custom events*

8

Building an Email Client from Scratch - Part 1

Let’s get started!
We will start with a completely clean slate for this application but will assume you have the Ext

JS framework downloaded and available locally, along with the latest Sencha Cmd installed.

You can download a trial of the Ext JS SDK and tools here:

 Download the Free Trial

https://www.sencha.com/products/extjs/evaluate/

9

Building an Email Client from Scratch - Part 1

Shared Code Toolkit Specific Code
Any code that we want to

share between toolkit apps

we put into the ‛app’,in the

same namespace matching

folder structure we use

everywhere in an Ext JS

application.

For example: a class named

‛ExtMail.controller.user.

UserGridController’ would

be located in ‛app/controller/

user/UserGridController.js’

All of the Classic toolkit code

(i.e. code that references

Classic toolkit components)

will go in the ‛classic/src’

folder, while the Modern

toolkit code will be found

in the ‛modern/src’ folder.

Both of these folders should

follow the same namespace

matching folder structure

as the Shared Code’s app

folder.

The loader handles shared code by looking for a

matching class in the toolkit folder first, then, if it

doesn’t find a match, look in the shared code folder

for it instead. You can add additional class paths by

updating the ‛classPath’ array in the ‛app.json’.

Application Structure
We start this application build with a barebones Universal

Sencha application, created with the following Sencha Cmd

command.

By creating a Universal application we can build our

application with the Classic and Modern toolkits, building on a

base of shared, common code.

sencha generate app ExtMail ../ext-mail

Th
e

pr
oj

ec
t’s

 fo
ld

er
 s

tr
uc

tu
re

 lo
ok

s
lik

e
th

is
:

10

Building an Email Client from Scratch - Part 1

To begin with we will focus on building the Classic Toolkit application but we will architect the

app in a way that will let us easily build out the Modern Toolkit app later on by extending our

shared code..

To start us off we have a ‛Main’ component which will render a Viewport on screen for us, along

with a shared ‛MainController’ and ‛MainModel’ which are attached to the Main component.

Learn how to structure your
application

Watch this Section!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=294
https://youtu.be/-VF279ykDVQ?t=294
https://youtu.be/-VF279ykDVQ?t=294
https://www.youtube.com/watch?v=-VF279ykDVQ

11

Building an Email Client from Scratch - Part 1

Discover static data source setup
techniques now

Setting up Static Data Sources

Contacts Labels Messages

This is the first name, last

name, and email address

of the contacts that we will

use to populate theRecipient

field.

This data is in a tree

structure and will have

the labels/folders that a

message can be part of, for

example, Inbox, Starred,

Drafts, Sent, etc.

Finally, this dataset is all the

messages that will be loaded

into the app and displayed.

contacts.json labels.json messages.json

At this stage we’re not going to set up a real backend API but instead, just load in some static

dummy data from JSON files stored in a folder named ‛data’. We have 3 data types:

Watch this Chapter!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=488
https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/data/contacts.json
https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/data/labels.json
https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/data/messages.json
https://youtu.be/-VF279ykDVQ?t=488
https://youtu.be/-VF279ykDVQ?t=488
https://www.youtube.com/watch?v=-VF279ykDVQ

12

Building an Email Client from Scratch - Part 1

Data Models
With our static backend data ready we want to create an ‛Ext.data.Model’ class to represent a

single entity of each. These models will be shared between toolkit apps so will be located under

the ‛app/model’ folder.

Messages

We start by creating a basic model class.

model/Message.js

Ext.define(‘ExtMail.model.Message’, {

 extend: ‘Ext.data.Model’,

});

We can then define the ‛fields’ that our model has, mapping them to the fields in our dataset.

fields: [
{

name: ‘firstName’
},
{

name: ‘lastName’
},
{

name: ‘fullName’,
calculate: function(data) {

var firstName = data.firstName || ‘’;
var lastName = data.lastName || ‘’;

return Ext.String.trim(firstName + ‘’ + lastName);
}

},
 {

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/model/Message.js

13

Building an Email Client from Scratch - Part 1

name: ‘email’
},
{

name: ‘date’,
type: ‘date’,
dateFormat: ‘c’

},
{

name: ‘subject’
},
{

name: ‘message’
},
{

name: ‘labels’, // an array of ExtMail.enums.Labels
type: ‘auto’,
defaultValue: []

},
{

name: ‘unread’,
type: ‘boolean’

},
{

name: ‘draft’,
type: ‘boolean’

},
{

name: ‘outgoing’,
type: ‘boolean’

},
{

name: ‘sent’,
type: ‘boolean’

}
]

14

Building an Email Client from Scratch - Part 1

We will want to display the message recipient’s full name (i.e. first and last name combined) in

various places in the application so we make use of the ‛calculate’ config which lets us build

a new field based on the others. In this case, we combine the first and last names so we can

reference the ‛fullName’ field as we would any of the other fixed fields. This ‛calculate’ function

will be re-executed if any of the dependent fields that are referenced in it are updated.

When just defining the ‛name’ of the field then we can simplify it to a single string

containing the name. The framework will apply all the defaults for us.

The ‛name’ we define will be used to read the property from the source data and for non-string

data types, we define the ‛type’ property so that we convert the data into the correct type. If

this is omitted a type of ‛auto’ will be used.

For our ‛labels’ field we are expecting an array of IDs that doesn’t have its own type so we

explicitly tell it to use ‛auto’ and give it a ‛defaultValue’ of an empty array so we always have

something to work with.

As well as the ‛fields’ definition we add the ‛hasLabel’, ‛addLabel’, and ‛removeLabels’ helper

functions to allow us to easily manipulate the ‛labels’ array in a standard way.

 hasLabel: function(labelId) {
var labels = this.get(‘labels’) || [];
return labels.indexOf(labelId) >= 0

 },
 addLabel: function(labelId) {

var labels = this.get(‘labels’) || [];
labels.push(labelId);
this.set(‘labels’, Ext.clone(labels)); // clone so it triggers an

update on the record
 },
 removeLabel: function(labelId) {

 var labels = this.get(‘labels’) || [];
labels = Ext.Array.remove(labels, labelId);

15

Building an Email Client from Scratch - Part 1

this.set(‘labels’, Ext.clone(labels)); // clone so it triggers an
update on the record
 }

When we manipulate the array in the ‛labels’ field we clone it and then ‛set’ it back to

the model instance. This is so the operation is recognised as an update and forces any

bound UI components to update themselves. The add/remove operations happen in-

situ (i.e. on the same array instance) and the model won’t recognise deep changes, but

it will recognise if an entirely new array instance is given.

Finally, we want all messages created in the browser to have a unique ID so we use the ‛Ext.

data.identifier.Uuid’ class to generate a Guid type identifier on all new messages.

 requires: [
‘Ext.data.identifier.Uuid’

],
 identifier: ‘uuid’,

Contact
model/Contact.js

The Contact model is very basic, making use of the simple array of strings syntax for the ‛fields’

config.

Ext.define(‘ExtMail.model.Contact’, {
 extend: ‘Ext.data.Model’,
 fields: [

‘name’, ‘email’, ‘phone’
]

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/model/Contact.js

16

Building an Email Client from Scratch - Part 1

Label
model/Label.js

The Label entities will form part of a tree structure so instead of the regular Ext.data.Model’

class we will extend the ‛Ext.data.TreeModel’ class which will add some necessary functionality

for handling nested model instances. This happens under-the-hood and so all we need to do is

define the fields that each entity in the tree structure will have.

Ext.define(‘ExtMail.model.Label’, {

 extend: ‘Ext.data.TreeModel’,

 fields:

‘name’,

{ name: ‘unreadCount’, type: ‘int’ }

]

});

Explore how to work with data
models

Watch this Part!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/model/Label.js
https://youtu.be/-VF279ykDVQ?t=615
https://youtu.be/-VF279ykDVQ?t=615
https://youtu.be/-VF279ykDVQ?t=615
https://www.youtube.com/watch?v=-VF279ykDVQ

17

Building an Email Client from Scratch - Part 1

With the data models in place we can define stores that will hold and manipulate collections of

them. These stores will be used to bind to our UI components and ensure the data and UI are

kept in sync. Like the models the stores can be shared across toolkits and so will be located in

the ‛app/store’ folder.

his store extends the ‛Ext.data.Store’ base class and defines an ‛alias’ of ‛store.Messages’. This

alias allows us to reference it from configuration objects - we’ll see this in use later.

Messages
store/Messages.js

Aliases are shorthand names that allow us to reference classes from configuration

objects. You will likely be familiar with component aliases known as ‛xtypè s’

When creating your own Component classes you would define its alias by defining alias:

‛widget.MyComponent’ or by using the shorthand of xtype: ‛MyComponent’. For non-

component classes you would use alias and prefix the value with the category of class, for

example “widget”, “store”, “model” and “proxy”.

The store needs to know what type of models it will contain, so we assign the name of the

model class to the ‛model’ config. We want to have this store load data as soon as it is

instantiated so we set the ‛autoLoad’ property to true, and we tell the store to always keep the

Message model instances in chronological order by specifying a ‛sorters’ configuration

Data Stores

Finally, we tell the store how it can load data by defining a ‛proxy’. In this case,

we want to load data via AJAX, pointing it to the ‛url’ of our dummy data file.

We also define a ‛reader’ so the proxy knows what format the data will be received in and how

to extract the collection of model instances, in this case from the ‛rows’ property.

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/store/Messages.js

18

Building an Email Client from Scratch - Part 1

Ext.define(‘ExtMail.store.Messages’, {

 extend: ‘Ext.data.Store’,

 alias: ‘store.Messages’,

 model: ‘ExtMail.model.Message’,

 autoLoad: true,

 sorters: [

{

property: ‘date’,

direction: ‘DESC’

}

],

 proxy: {

type: ‘ajax’,

url: ‘data/messages.json’,

reader: {

type: ‘json’,

rootProperty: ‘rows’

}

 }

});

Contacts
store/Contacts.js

The Contacts store has an identical setup to the Messages one with an alias, model, and proxy

defined. Very often stores will be simple like this but defining them as their own class allows

them to extend their functionality with helper functions.

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/store/Contacts.js

19

Building an Email Client from Scratch - Part 1

Ext.define(‘ExtMail.store.Contacts’, {

 extend: ‘Ext.data.Store’,

 alias: ‘store.Contacts’,

 model: ‘ExtMail.model.Contact’,

 autoLoad: true,

 proxy: {

type: ‘ajax’,

url: ‘data/contacts.json’,

reader: {

type: ‘json’,

rootProperty: ‘rows’

}

 }

});

As we mentioned before the Labels are set out in a tree structure. To achieve this we must

use the ‛Ext.data.TreeStore’ base class which allows the nested data to be read and stored

correctly. Like the regular store we include an ‛alias’, ‛model’ and ‛proxy’. We also add a

‛root’ configuration which defines what the root node of the tree looks like and will be where all

the loaded data branches off from.

Labels
store/Labels.js

Ext.define(‘ExtMail.store.Labels’, {

 extend: ‘Ext.data.TreeStore’,

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/store/Labels.js

20

Building an Email Client from Scratch - Part 1

Learn to create data stores

Watch this Section!

 alias: ‘store.Labels’,

 model: ‘ExtMail.model.Label’,

 root: {

name: ‘Test’,

expanded: true

 },

 proxy: {

type: ‘ajax’,

url: ‘data/labels.json’

 }

});

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=1036
https://youtu.be/-VF279ykDVQ?t=1036
https://youtu.be/-VF279ykDVQ?t=1036
https://www.youtube.com/watch?v=-VF279ykDVQ

21

Building an Email Client from Scratch - Part 1

Creating Common View Controller
Next we set up our main View Controller class. We are aiming to share as much code as

possible between our Classic and Modern toolkit applications so we start by creating a base

View Controller that will be extended by each of the toolkits so toolkit-specific logic can be

added when needed.

We already have a ‛view/main/MainController.js’ file which we will rename to

‛MainControllerBase.js’ and update its contents appropriately:

Ext.define(‘ExtMail.view.main.MainControllerBase’, {

 extend: ‘Ext.app.ViewController’

});

We can then create our toolkit MainController classes in the toolkit folders and define them as

extending this base class.

Ext.define(‘ExtMail.view.main.MainController’, {

 extend: ‘ExtMail.view.main.MainControllerBase’,

 alias: ‘controller.main’

});

Ext.define(‘ExtMail.view.main.Main’, {

 extend: ‘Ext.panel.Panel’,

 xtype: ‘app-main’,

Note that we move the ‛alias’ to the sub-class so that we can reference it rather than the base-

class. This is used in the ‛Main.js’ class to link the two together.

22

Building an Email Client from Scratch - Part 1

As we said before the loader will initially look for the ‛MainControllerBase’ class in

the classic toolkit’s ‛view/main’ folder but when it isn’t found it will look in the shared

‛app’ folder.

Learn how to create a common
view controller

 requires: [

‘ExtMail.view.main.MainController’

],

 controller: ‘main’,

});

Watch this Step!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=1256
https://youtu.be/-VF279ykDVQ?t=1256
https://youtu.be/-VF279ykDVQ?t=1036
https://www.youtube.com/watch?v=-VF279ykDVQ

23

Building an Email Client from Scratch - Part 1

Ext.define(‘ExtMail.view.main.MainModel’, {

 extend: ‘Ext.app.ViewModel’,

 alias: ‘viewmodel.main’,

 requires: [

],

 data: {

 },

 formulas: {

 },

 stores: {

 },

 constructor: function() {

this.callParent(arguments);

 }

});

In our application there won’t be any toolkit specific state to store but if there was you

could follow a similar pattern to the ViewController and create a base version which

would then be extended in each toolkit.

Creating Common View Model
The main View Model will be used to store the bulk of the application’s state. This state will be

common between the Classic and Modern toolkits so we can elevate that to the shared ‛app’

folder and only define it once.

24

Building an Email Client from Scratch - Part 1

`data´

`formulas´
These are calculated fields that are linked to ‛data’ properties or other ‛formulas’ and are re-

evaluated if any of the linked fields’ values change.

The data property holds an object with simple key/value pairs of state data. These items can be

bound to our views and updated during user interaction. Often this will be small pieces of state

data or simple collections of data items.

`stores´
The ‛stores’ object has definitions for stores that will be instantiated in the View Model and can

be bound to view components.

Finally, our constructor is where we can set up any other bindings and event handlers on our

View Model or stores.

Learn how to create a common
view model

Watch this Section!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=1404
https://youtu.be/-VF279ykDVQ?t=1404
https://youtu.be/-VF279ykDVQ?t=1404
https://www.youtube.com/watch?v=-VF279ykDVQ

25

Building an Email Client from Scratch - Part 1

Messages Store
The main store in our applications is the one that will load and contain our list of messages. We

define this by adding a key to our ‛stores’ object and giving it a configuration object. This key

will be the name we use when binding the store to any view component.

...

stores: {

 messages: {

type: ‘Messages’

 },

},

...

26

Building an Email Client from Scratch - Part 1

Creating the Messages Grid
Now that we have the code set up to support our views we can create a grid to render our

Messages to the screen. We start by creating a ‛ExtMail.view.messages.MessageGrid’ class in

our Classic toolkit folder.

Ext.define(‘ExtMail.view.messages.MessageGrid’, {

 extend: ‘Ext.grid.Panel’,

 alias: ‘widget.messages-MessageGrid’

});

Discover how to create the
messages grid

Watch this Phase!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=1578
https://youtu.be/-VF279ykDVQ?t=1578
https://youtu.be/-VF279ykDVQ?t=1578
https://www.youtube.com/watch?v=-VF279ykDVQ

27

Building an Email Client from Scratch - Part 1

Columns
A grid component needs to at least define the columns to show and a data store to render,

so we start by defining columns to show the message sender’s full name, the subject and

the sent date.

 …

 columns: [

{

dataIndex: ‘fullName’,

minWidth: 250,

header: false,

tdCls: ‘full-name’

},

{

dataIndex: ‘subject’,

flex: 1,

header: false

},

{

xtype: ‘datecolumn’,

dataIndex: ‘date’,

header: ‘Received’,

width: 100,

header: false,

align: ‘end’,

format: ‘j M \’y’

}

]

 …

28

Building an Email Client from Scratch - Part 1

We define the ‛dataIndex’ to tell the column which property from the row’s record to display in

that cell.

The ‛datecolumn’ class is one of these sub-classes that allows us to define a ‛format’ which will

be used to output a formatted date into the grid cell.

Ext.define(‘ExtMail.view.main.Main’, {

 extend: ‘Ext.panel.Panel’,

 xtype: ‘app-main’,

 requires: [

‘Ext.plugin.Viewport’,

‘ExtMail.view.main.MainController’,

‘ExtMail.view.main.MainModel’,

 ‘ExtMail.view.messages.MessageGrid’,

],

 plugins: ‘viewport’,

 controller: ‘main’,

 viewModel: ‘main’,

 layout: {

With the columns defined we can drop our MessageGrid into our Main component and render

it to screen. We use the ‛messages-MessageGrid’ alias to add it to our Main component’s

‛items’ array.

If no ‛xtype’ is specified then a column will config will instantiate the `Ext.grid.column.Column’

class, but if we have a data type that needs special formatting we can use one of the various

sub-classes available.

29

Building an Email Client from Scratch - Part 1

type: ‘border’

 },

 items: [

{

xtype: ‘messages-MessageGrid’,

region: ‘center’

}

]

});

30

Building an Email Client from Scratch - Part 1

Binding to a Data Store
All we need to do now is give the grid a data store to render. We do this using

the ‛bind’ config and pass it the name of the store we created in our View

Model earlier.

 …

 {

xtype: ‘messages-MessageGrid’,

region: ‘center’,

bind: {

store: ‘{messages}’

}

 }

 …

31

Building an Email Client from Scratch - Part 1

Styling Specific Rows
At the moment we can’t differentiate between read and unread messages in our grid, so we

want to make the unread messages bold. To do this we add a ‛getRowClass’ method to the

‛viewConfig’ configuration object.

 viewConfig: {

getRowClass: function(messageRecord) {

var cls = [];

if (messageRecord.get(‘unread’)) {

cls.push(‘unread’);

}

return cls.join(‘’,);

}

This function should return a string containing one or more CSS classes that will be applied to

the row’s HTML element. In this case, we want to add the ‛unread’ class if the record’s ‛unread’

property is true. We couple this with some custom styling added to an SCSS file located in

‛MessageGrid.scss’ as a sibling to the ‛MessageGrid.js’ file. Sencha Cmd will automatically

detect this file and compile its contents into CSS.

.message-grid {

 .unread {

.x-grid-cell-inner {

font-weight: bold;

}

 }

}

32

Building an Email Client from Scratch - Part 1

We also add the ‛message-grid’ CSS class to the grid so we can keep our CSS rules scoped to

that component.

33

Building an Email Client from Scratch - Part 1

Creating the Message Reader
With the Message Grid in place, we want to be able to click a message and be taken to a new

screen which will display the message in full.

We create a new class called ‛ExtMail.view.reader.MessageReader’ extending the ‛Ext.Panel’

class and giving it a basic HTML template string to display the message details.

Ext.define(‘ExtMail.view.reader.MessageReader’, {
 extend: ‘Ext.panel.Panel’,
 alias: ‘widget.reader-MessageReader’,

 cls: ‘message-reader’,
 tpl: [

‘<div class=”subject”>{subject}</div>’,
 ‘<div class=”info”>’,
‘ <div class=”sender”>’,
 ‘ {fullName} ({e-

mail})’,
‘ </div>’,
 ‘ <div class=”date”>{date:date(“D, j M Y, H:i”)}</div>’,
‘</div>’,

‘<div class=”message”>{message}</div>’
],
 data: {}
});

The ‛tpl’ config is turned into an ‛Ext.XTemplate’ instance and can be defined as a

String or an Array of Strings. We can also pass an object as the array’s last.

We couple this with an SCSS file alongside it with the same name- ‛MessageReader.scss’ -

which will give us some nice styling for each of the details:

34

Building an Email Client from Scratch - Part 1

.message-reader {
 padding: 2rem;

 .subject {
 font-size: 1.5rem;
font-weight: bold;
margin-bottom: 1.5rem;

 }

 .info {
display: flex;

.sender {
flex: 3;

.name {
font-weight: bold;

}
}

.date {
flex: 1

}
 }

 .message {
font-size: 1rem;
margin: 1.5rem 0;

 }

}

Explore how to create the
message reader

Watch this Step!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=2254
https://youtu.be/-VF279ykDVQ?t=2254
https://youtu.be/-VF279ykDVQ?t=2254
https://www.youtube.com/watch?v=-VF279ykDVQ

35

Building an Email Client from Scratch - Part 1

Showing the Message Details
Now we can set up our app to switch to the MessageReader component when the user clicks a

MessageGrid row.

First, we must create a wrapping component in our Main component allowing us to flip

between the Grid and Reader and only have one on-screen at a time. To do this we use the

Card layout.

{

 xtype: ‘panel’,

 region: ‘center’,

 layout: ‘card’,

 reference: ‘messagesWrapper’,

 items: [

{

xtype: ‘messages-MessageGrid’,

bind: {

store: ‘{messages}’

}

},

{

xtype: ‘reader-MessageReader’,

bind: {

data: ‘{selectedMessage}’

}

}

]

}

We bind the MessageReader’s ‛data’ property (which is merged with the ‛tpl’) to the

‛selectedMessage’ data property. This property is defined on the MainViewModel and will

track the Message record that has been clicked on. We default this to ‛null’.

36

Building an Email Client from Scratch - Part 1

// MainModel.js
data: {
 selectedMessage: null
}

We can now use the ‛itemclick’ event of the grid to handle a user clicking on a message.

We attach a handler to the event and attach it to a method that we will define in the

MainControllerBase class using a string.

 {
xtype: ‘messages-MessageGrid’,
bind: {

store: ‘{messages}’
},
listeners: {

 itemclick: ‘onMessageClick’
}

 }

In the ‛onMessageClick’ function we’re going to set the ‛selectedMessage’ with the Message

record that was clicked.

// MainControllerBase.js

onMessageClick: function(grid, messageRecord, rowEl, index, e) {

 this.getViewModel().set(‘selectedMessage’, messageRecord);

}

Finally, we need to tell the card layout to switch between the Grid and the Reader when the

‛selectedMessage’ property has a value. To do this we define a ‛formula’ which will return

the index of the card we want to display, i.e. 0 (the Message Grid) when ‛selectedMessage’ is

empty, and 1 (the Message Reader) when ‛selectedMessage’ has a value.

37

Building an Email Client from Scratch - Part 1

// the index of the Message Reader card layout to show. 0 = MessageGrid; 1 =

MessageReader

messageCardIndex: function(get) {

 return get(‘selectedMessage’) ? 1 : 0;

}

bind: {

 activeItem: ‘{messageCardIndex}’;

}

We can take this formula and bind it to the wrapper component’s ‛activeItem’ property. This

means that the change in the ‛selectedMessage’ property will trigger the card layout to change.

By using the passed in ‛get’ function to lookup values that we want the formula to react

to, the framework will always reevaluate the formula if these data properties change

38

Building an Email Client from Scratch - Part 1

Creating a Dynamic Toolbar
We’re now able to move to a Message and view its contents but we can’t yet move back again.

To solve this problem we will create a Toolbar whose contents will be dynamic and change

based on the current context.

For example: When on the Message Grid we want to show a Refresh button, but when on the

Message Reader we want to show a Back button.

We create a new class called ‛ExtMail.view.messages.MessageToolbar’ and extend the ‛Ext.
toolbar.Toolbar’ class.

Ext.define(‘ExtMail.view.messages.MessagesToolbar’, {

 extend: ‘Ext.toolbar.Toolbar’,

 alias: ‘widget.messages-MessagesToolbar’,

 defaultListenerScope: true,

 items: [

{

tooltip: ‘Refresh’,

iconCls: ‘x-fa fa-redo’,

handler: ‘onRefreshClick’,

bind: {

hidden: ‘{selectedMessage}’

}

},

{

tooltip: ‘Back’,

iconCls: ‘x-fa fa-arrow-left’,

handler: ‘onBackClick’,

hidden: true, // hide from start

bind: {

hidden: ‘{!selectedMessage}’

39

Building an Email Client from Scratch - Part 1

}

}

],

 onRefreshClick: function () {

this.fireEvent(‘refresh’);

 },

 onBackClick: function () {

this.fireEvent(‘back’);

 }

});

We create two buttons - a Refresh and a Back - and bind their ‛hidden’ property to the

‛selectedMessage’ value. This property will be evaluated as truthy or falsey so we can use

this to show and hide the buttons when a message is selected or not. For the Back button, we

negate the value using the ‛!’ operator.

We define the ‛handler’ functions as strings that will reference the methods with these names

in the component. Each of these handler functions will raise a custom event that can be bound

to our parent component.

 By setting the ‛defaultListenerScope’ to true the ‛handler’ values will be evaluated

within the context of the toolbar component. If this was set to false (or omitted) then

the component would look up the tree to a View Controller for methods with matching

names. This is useful if you want to try and keep your component self-contained.

Next we add the new toolbar as a ‛dockedItem’ of the wrapper component within our Main

class. By making it a docked component it will always be at the top of the view and will be

visible regardless of which of the cards is visible.

40

Building an Email Client from Scratch - Part 1

{

 xtype: ‘panel’,

 region: ‘center’,

 layout: ‘card’,

 reference: ‘messagesWrapper’,

 bind: {

activeItem: ‘{messageCardIndex}’

 },

 dockedItems: [

{

xtype: ‘messages-MessagesToolbar’,

dock: ‘top’,

height: 56,

listeners: {

refresh: ‘onRefreshMessages’,

back: ‘onBackToMessagesGrid’

}

}

],

 ...

}

We can see our two custom events being referenced in the ‛listeners’ object and being given

handler functions that we will add in our MainControllerBase class.

// MainControllerBase.js

onRefreshMessages: function() {

 this.getViewModel().getStore(‘messages’).reload();

},

41

Building an Email Client from Scratch - Part 1

The ‛onRefreshMessages’ method simply finds the ‛messages’ store in the View Model and

reloads it. This will automatically refresh the grid and display the original data.

The ‛onBackToMessagesGrid’ will reset the ‛selectedMessage’ state to null which will cause the

‛messageCardIndex’ formula to reevaluate and change the card’s ‛activeItem’.

onBackToMessagesGrid: function() {

 this.getViewModel().set(‘selectedMessage’, null);

}// MainControllerBase.js

onRefreshMessages: function() {

 this.getViewModel().getStore(‘messages’).reload();

},

onBackToMessagesGrid: function() {

 this.getViewModel().set(‘selectedMessage’, null);

}

Learn how to create a dynamic
toolbar

Watch this Stage!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=2796
https://youtu.be/-VF279ykDVQ?t=2796
https://www.youtube.com/watch?v=-VF279ykDVQ

42

Building an Email Client from Scratch - Part 1

Summary
We have demonstrated a lot of different aspects of Ext JS in this e-book

and have built the foundation upon which the rest of our Email Client Application

will be built.

We have created and modelled our data structures through Models

and Stores and hooking them up to a static backend through Proxies

and Readers. Following this, we set up our shared View Controller and View Model

to allow a cross-toolkit application to be easily built with the maximum possible

amount of code-sharing between the two.

We then started building the Classic toolkit’s interface by making a Messages

Grid to display all of the loaded messages and a Message Reader to display the

full details of a message. These components took advantage of the data binding

options of the framework keeping the amount of code needed to a minimum and

maintaining a state-driven style of interface design.

43

Building an Email Client from Scratch - Part 1

Thank you for reading!

Download the Part-2 of Building an Email Client
from Scratch

 Click Here to Download Now!

Part-1 of Building an Email Client from Scratch
We hope you found it informative and helpful in your development projects. We have 6 more

parts lined up to take you through the entire process of building an email client from scratch.

https://www.sencha.com/products/extjs/evaluate/
https://img.en25.com/Web/Embarcadero/%7Bfb2f3f27-592d-405c-abc5-cc6821fa3377%7D_Building-an-Email-Client-from-Scratch-Part2.pdf

Make the right decision for your business.

START YOUR FREE 30-DAY TRIAL

Save time and money.

Try Sencha Ext JS
FREE for 30 DAYS

View the tutorials

Read the Getting Started Guides

See It in Action

MORE HELPFUL LINKS:

https://www.sencha.com/products/extjs/evaluate/?utm_source=whitepaper&utm_medium=Email
https://www.youtube.com/channel/UC8uPlQw87Q7thRJY1leWZJw/videos
https://docs.sencha.com/extjs/7.6.0/guides/getting_started/getting_started_with_npm.html
https://examples.sencha.com/extjs/7.6.0/

