Building an Email
Client from Scratch
PART 1

Stuart Ashworth
Sencha MVP

s Building an Email Client from Scratch - Part 1

This e-book series will take you through the process of building an email client from scratch,
starting with the basics and gradually building up to more advanced features.

PART 1: Setting Up the Foundations

Creating the Application and Setting up Data Structures and Components for Seamless Email
Management

PART 2: Adding Labels, Tree and Dynamic Actions to Enhance
User Experience

Building a Dynamic Toolbar and Unread Message Count Display for Label-Based Message
Filtering

PART 3: Adding Compose Workflow and Draft Messages

Streamlining Message Composition and Draft Editing for Seamless User Experience.

PART 4: Mobile-Optimized Email Client with Ext JS Modern Toolkit.

Creating a Modern Interface for Mobile Devices using Ext JS Toolkit

PART 5: Implementing a Modern Interface with Sliding Menu &
Compose Functionality

Implementing Modern toolkit features for the Email Client: Sliding Menus, Compose Button,
Forms, etc.

PART 6: Integrating with a REST API

Transitioning from static JSON files to a RESTful APl with RAD Server for greater scalability and
flexibility

PART 7: Adding Deep Linking and Router Classes to the Email
Client Application

Integrating Deep Linking with Ext JS Router Classes for Improved Application Usability

By the end of all the 7 series, you will have a fully functional email client that is ready to be
deployed in production and used in your daily life. So, get ready to embark on an exciting
journey into the world of email client development, and buckle up for an immersive learning
experience!

_

Building an Email Client from Scratch - Part 1

|
hY 7’
4 A
]

1
2
3
4
5
6
7

Tips for using this e-book

Start with Part-1 and work your way through each subsequent series in order. Each
series builds upon the previous one and assumes that you have completed the previous
part.

As you read each series, follow along with the code examples in your own development
environment. This will help you to better understand the concepts and see how they
work in practice.

Take breaks and practice what you have learned before moving on to the next series.
This will help to reinforce your understanding of the concepts and ensure that you are
ready to move on to the next step.

Don’t be afraid to experiment and customize the code to meet your own needs. This will
help you to better understand the concepts and make the email client your own.

If you encounter any issues or have any questions, don't hesitate to reach out to the
community or the authors of the articles. They will be happy to help you and provide
guidance along the way.

Once you have completed all the series, take some time to review the entire email client
application and make any necessary adjustments to fit your specific needs.

Finally, enjoy the satisfaction of having built your own fully functional email client from
scratch using Ext JS!

W & Sencha

Table of Contents

Executive Summary 5

Application Home Screen - Final Outcome 6

Let's Get Started 8

Application Structure 9

Setting up Static Data Sources 1
Data Models 12
Data Stores 17
Creating Common View Controller 21
Creating Common View Model 23
Message Store 25
Creating the Messages Grid 26
Columns 27
Binding a Data Store 30
Styling a Specific Rows 31
Creating the Message Reader 33
Showing the Message Details 35
Creating a Dynamic Toolbar 38
Summary 42
Try Sencha Ext JS free for 30 Days 44

_

Building an Email Client from Scratch - Part 1 * Sencha [

Executive Summary

In this e-book, we will demonstrate how to lay the foundations for creating a well-structured
and maintainable universal Ext JS application. Throughout the series, we will be building

an Email Client that will allow users to view messages, perform actions on those messages,
navigate message folders, and send new messages.

By the end of this e-book, we will have created a new application and set up the data structures
that will support the rest of the application build. We will create simple Message Grid and
Message Reader components that will be bound directly to these data structures. Some basic
user interaction will be handled to allow navigation between the grid and the reader.

Key Concepts / Learning Points
* Structuring a Universal Application.

* Modelling simple data structures.

* Using data bindings and events.

* Creating a grid, a templated component, and a toolbar.

Code along with Stuart!

Building an Email Client

Using Senc Start buddy coding with Stuart on-demand!
Part 1

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=-VF279ykDVQ
https://www.youtube.com/watch?v=-VF279ykDVQ
https://www.youtube.com/watch?v=-VF279ykDVQ
https://www.youtube.com/watch?v=-VF279ykDVQ

W & Sencha

Application Home Screen - Final Outcome

We can see how the application will look in the screenshots below, along with the Modern
toolkit version of the application which we will develop later in the series.

Desktop Version
Ex; MQLI T

Ext Mail application’s home screen.

Ext Mail

"3
E‘f Compose Sy 15 messages
B inbox (9) “r Bailey Muselli Morbi quis tortor id nulla ultrices aliquet. 29 Nov '21
B starred 7 Fred McGaugie Donec dapibus. 28 Nov '21
B sent 77 Dede Gayforth Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridicul... 29 Aug 21
B ofts 37 Shel Roddie Quisque erat eros, viverra eget, congue eget, semper rutrum, nulla. 23 Aug 21
B anmail (9) Meri Matthiesen Quisfue erat eros, viverra eger, congue eget, sermper rutrum, nulla 15 Aug ‘21
8 & User Labels ¥ Elisa Coolican Curabitur gravida nisi at nibh. 1jul’z21
B & Home Welble Custed Integer pede justo, lacinia eget, tincldunt eget tempus vel, pede 14 jun ‘21
W Enerey ¢ Ricardo Tullot Nam tristique tortor eu pede. 20 May ‘21
i ntern
B incerrer T lanith Hanny Marbi sem matiris, laoreet ut, rhoncus aliquet, pulvinar sed, nisl, 1 May '21
i | SUranc
W Irsurance T Neis Rambaut Etiam justa Shpr'21
' Tax A T
¥ Louella Grafton In quis |usto, 14 Mar ‘21
B newsieters :))
w0 Anetta Fendley Proin leo odio, porttitor id, consequat in, consequat ut. nulla, 28 Feb '21

E’: Compose c 15 messages
‘ Inbox (8) Bailey Muselli Morbi quis tortor id nulla ultrices aliquet. 29 Mow ‘21
B starred it Fred McGaugie Donec dapibus. ‘21
E prafts (1) 7r Shel Roddie Quisque erat ero| ks N
i All Mail (8) Mer| Matthlesan Quisue erat eros, Subjsct 21
8 & User Labels ¢ Elisa Coolican Curabitur gravid: 121
8 & Home T Welbie Custed Irteger pede justo, ‘21
B Erergy ¥ Ricardo Tullot Nam tristique tof ‘21
B internet Janith Hanny torbl sem mauris, 21
W instraice Neils Rambaut Etiam justo 21
B T Louelia Grafton In quis juste. 21

B revsleters)
T Anetta Fendiey Proin leo odio, por 21
Fr Arin Kingsnod Vivamus vestibul ‘21
+r Shelbi Banford Maecenas ut mas ‘21
w7 Alanson Hawkin Nulla ac enim. ‘21

Ext Mail's compose window

& Sencha I

Mobile Version

~

Ext Mall

Inbox (9)

Starred

Sent

Drafts

All Mail (9)

User Labels

Home

Energy
Internet
Insurance
Tax

Newsletters

Baile)
Morbi |
Sed sa

Fred |
Donec
Duis bi

Dede
Cum si
In cony

Shel |
Quisqu
Lorem

Merl I
Quisqu
In quis

Elisa |
Curabi
Vestibi

Welbi

. Integetr
DerAim -~

Ext Mail's Modern Toolkit interface

s— 15 messages

29 Nov '21

Bailey Muselli
. Morbi quis tortor id nulla ultrices aliqu... i}

Sed sagittis. Nam congue, risus semp...

Fred McGaugie 28 Nov '21
Donec dapibus. g
Duis bibendum. Morbi non quam nec d...

Dede Gayforth 29 Aug 21
Cum sociis natoque penatibus et magn... 17
In congue. Etiam justo. Etiam pretium i...

Shel Roddie 23 Aug '21
Quisque erat eros, viverra eget, congu... 'ﬁ'
Lorem ipsum dolor sit amet, consectet...

Merl Matthiesen 15 Aug '21
Quisque erat eros, viverra eget, congue ... i‘j
In quis justo. Maecenas rhoncus aliqua...

Elisa Coolican 1 Jul 21
Curabitur gravida nisi at nibh. g
Vestibulum quam sapien, variu

Welbie Custed 1

1
Integer pede justo, lacinia eget, tincidun... ijf

Drmim A mai Kiilla aa anics T famamae +

Components and data will be linked with bindings and custom events®

- * senCha Building an Email Client from Scratch - Part 1

Eavere ipaem (201

Loterm fgsum

O Lorem ipsum

m} Lo ipsum Lorem |ps

Laner igsum

Let's get started!

We will start with a completely clean slate for this application but will assume you have the Ext
JS framework downloaded and available locally, along with the latest Sencha Cmd installed.

You can download a trial of the Ext JS SDK and tools here:

Download the Free Trial

https://www.sencha.com/products/extjs/evaluate/

§ Sencha

Application Structure
Clele

We start this application build with a barebones Universal build

Sencha application, created with the following Sencha Cmd
command. classic

> resources
sencha generate app ExtMail ../ext-mail

> SIc
By creating a Universal application we can build our ext
application with the Classic and Modern toolkits, building on a modern

base of shared, common code.
> resources

Shared Code Toolkit Specific Code

Any code that we want to All of the Classic toolkit code iy

share between toolkit apps (i.e. code that references (ESOLICES

we put into the ‘app’,in the Classic toolkit components) .gitignore
same namespace matching will go in the *classic/src’ app.js

folder structure we use folder, while the Modern i
everywhere in an Ext]S toolkit code will be found app.json
application. in the ‘modern/src’ folder. # bootstrap.css

Both of these folders should

follow the same namespace
matching folder structure N build.xml
as the Shared Code’s app

For example: a class named bootstrap.js

‘ExtMail.controller.user.

UserGridController’ would
be located in ‘app/controller/ classic.json
folder.

user/UserGridController.js’ classic.jsonp

 Index.html

The loader handles shared code by looking for a modern.Json

matching class in the toolkit folder first, then, if it modern.jsonp

doesn’t find a match, look in the shared code folder
i) Readme.md
for it instead. You can add additional class paths by

{} workspace.json

updating the ‘classPath’ array in the ‘app.json’.

The project's folder structure looks like this:

§ Sencha

To begin with we will focus on building the Classic Toolkit application but we will architect the
app in a way that will let us easily build out the Modern Toolkit app later on by extending our
shared code..

To start us off we have a ‘Main’ component which will render a Viewport on screen for us, along
with a shared ‘MainController’ and ‘MainModel’ which are attached to the Main component.

Learn how to structure your
Building an Email Client ‘h application

Using Sencl

Part 1

Watch this Section!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashwarth (MVP)

https://youtu.be/-VF279ykDVQ?t=294
https://youtu.be/-VF279ykDVQ?t=294
https://youtu.be/-VF279ykDVQ?t=294
https://www.youtube.com/watch?v=-VF279ykDVQ

Setting up Static Data Sources

At this stage we're not going to set up a real backend API but instead, just load in some static

§ Sencha

dummy data from JSON files stored in a folder named ‘data’. We have 3 data types:

Contacts
contacts.json

This is the first name, last
name, and email address

of the contacts that we will
use to populate theRecipient
field.

Building an Email Client

Using Sencj

Part 1

With Stuart Ashwarth (MVP)

Labels
labels.json

This data is in a tree
structure and will have

the labels/folders that a
message can be part of, for
example, Inbox, Starred,
Drafts, Sent, etc.

Messages
messages.json

Finally, this dataset is all the
messages that will be loaded
into the app and displayed.

Discover static data source setup
techniques now

Watch this Chapter!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=488
https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/data/contacts.json
https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/data/labels.json
https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/data/messages.json
https://youtu.be/-VF279ykDVQ?t=488
https://youtu.be/-VF279ykDVQ?t=488
https://www.youtube.com/watch?v=-VF279ykDVQ

’ SenCha Building an Email Client from Scratch - Part 1

Data Models

With our static backend data ready we want to create an ‘Ext.data.Model’ class to represent a

single entity of each. These models will be shared between toolkit apps so will be located under
the ‘app/model’ folder.

Messages

model/Message.js
We start by creating a basic model class.

Ext.define(‘ExtMail.model.Message’, {
extend: ‘Ext.data.Model’,

K

We can then define the *fields’ that our model has, mapping them to the fields in our dataset.

fields: [
{

name: ‘firstName’

b
{

name: ‘lastName’

name: ‘fullName’,

calculate: function(data) {
var firstName = data.firstName || ¢’;
var lastName = data.lastName || ’;

return Ext.String.trim(firstName + ¢’ + lastName);

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/model/Message.js

Building an Email Client from Scratch - Part 1 ’ SenCha

name: ‘email’

name: ‘date’,
type: ‘date’,
dateFormat: ‘c’

‘subject’

‘message’

name: €‘labels’,
type: ‘auto’,
defaultvalue: []

‘unread’,

‘boolean’

‘draft’,
‘boolean’

‘outgoing’,
‘boolean’

‘sent’,

‘boolean’

- * SenCha Building an Email Client from Scratch - Part 1

The ‘name’ we define will be used to read the property from the source data and for non-string
data types, we define the ‘type’ property so that we convert the data into the correct type. If
this is omitted a type of ‘auto’ will be used.

When just defining the ‘name’ of the field then we can simplify it to a single string
containing the name. The framework will apply all the defaults for us.

We will want to display the message recipient’s full name (i.e. first and last name combined) in
various places in the application so we make use of the ‘calculate’ config which lets us build

a new field based on the others. In this case, we combine the first and last names so we can
reference the ‘fullName’ field as we would any of the other fixed fields. This ‘calculate’ function
will be re-executed if any of the dependent fields that are referenced in it are updated.

For our ‘labels’ field we are expecting an array of IDs that doesn't have its own type so we

explicitly tell it to use ‘auto’ and give it a ‘defaultValue’ of an empty array so we always have
something to work with.

As well as the *fields’ definition we add the ‘*hasLabel’, ‘addLabel’, and ‘removeLabels’ helper
functions to allow us to easily manipulate the ‘labels’ array in a standard way.

hasLabel: function(labelld) {

var labels = this.get(‘labels’) ||
return labels.indexOf(labelld) »>=

1

addLabel: function(labelId) {
var labels = this.get(‘labels’) || [1;
labels.push(labelld);
this.set(‘labels’, Ext.clone(labels));

1

removelLabel: function(labelIld) {
var labels = this.get(‘labels’) || [1;
labels = Ext.Array.remove(labels, labelld);

Building an Email Client from Scratch - Part 1 ~ SenCha -

this.set(‘labels’, Ext.clone(labels));

When we manipulate the array in the ‘labels’ field we clone it and then ‘set’ it back to
the model instance. This is so the operation is recognised as an update and forces any

bound Ul components to update themselves. The add/remove operations happen in-
situ (i.e. on the same array instance) and the model won’t recognise deep changes, but
it will recognise if an entirely new array instance is given.

Finally, we want all messages created in the browser to have a unique ID so we use the ‘Ext.
data.identifier.Uuid’ class to generate a Guid type identifier on all new messages.

requires: [

‘Ext.data.identifier.Uuid’

I,

identifier: ‘uuid’,

Contact
model/Contact.js

The Contact model is very basic, making use of the simple array of strings syntax for the ‘fields’
config.

Ext.define(‘ExtMail.model.Contact’, {
extend: ‘Ext.data.Model’,
fields: [

‘name’, ‘email’, ‘phone’

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/model/Contact.js

~§ Sencha

Label
model/Label.js

The Label entities will form part of a tree structure so instead of the regular Ext.data.Model’
class we will extend the ‘Ext.data.TreeModel’ class which will add some necessary functionality
for handling nested model instances. This happens under-the-hood and so all we need to do is

define the fields that each entity in the tree structure will have.

Ext.define(‘ExtMail.model.Label’, {
extend: ‘Ext.data.TreeModel’,
fields:

‘nhame’,

{ name: ‘unreadCount’, type: ‘int’ }

B searred
B sen

B Drafts (1)

29 Aug 21

24 Aug ‘21

B Al Mail (6)

B Harme

B e

Explore how to work with data
Building an Email Client mode|s

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Using Senc|
Part 1
Watch this Part!

With Stuart Astwarth

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/model/Label.js
https://youtu.be/-VF279ykDVQ?t=615
https://youtu.be/-VF279ykDVQ?t=615
https://youtu.be/-VF279ykDVQ?t=615
https://www.youtube.com/watch?v=-VF279ykDVQ

& Sencha I

Data Stores

With the data models in place we can define stores that will hold and manipulate collections of
them. These stores will be used to bind to our Ul components and ensure the data and Ul are
kept in sync. Like the models the stores can be shared across toolkits and so will be located in
the ‘app/store’ folder.

Messages
store/Messages.js

his store extends the ‘Ext.data.Store’ base class and defines an ‘alias’ of ‘store.Messages’. This
alias allows us to reference it from configuration objects - we'll see this in use later.

Aliases are shorthand names that allow us to reference classes from configuration
objects. You will likely be familiar with component aliases known as ‘xtype’s’

When creating your own Component classes you would define its alias by defining alias:
‘widget.MyComponent’ or by using the shorthand of xtype: ‘MyComponent’. For non-
component classes you would use alias and prefix the value with the category of class, for

n ou n u

example “widget”, “store”, “model” and “proxy”.

The store needs to know what type of models it will contain, so we assign the name of the
model class to the ‘model’ config. We want to have this store load data as soon as it is
instantiated so we set the ‘autoLoad’ property to true, and we tell the store to always keep the
Message model instances in chronological order by specifying a ‘sorters’ configuration

Finally, we tell the store how it can load data by defining a ‘proxy". In this case,
we want to load data via AJAX, pointing it to the ‘url’ of our dummy data file.
We also define a ‘reader’ so the proxy knows what format the data will be received in and how

to extract the collection of model instances, in this case from the ‘rows’ property.

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/store/Messages.js

Building an Email Client from Scratch - Part 1

Ext.define(‘ExtMail.store.Messages’, {

extend: °‘Ext.data.Store’,

alias: ‘store.Messages’,

model: ‘ExtMail.model.Message’,
autolLoad: true,

sorters: [

{
property: ‘date’,

direction: €‘DESC’

I,

proxy: {
type: ‘ajax’,
url: ‘data/messages.json’,
reader: {
type: ‘json’,

rootProperty: ‘rows’

Contacts
store/Contacts.js

The Contacts store has an identical setup to the Messages one with an alias, model, and proxy

defined. Very often stores will be simple like this but defining them as their own class allows

them to extend their functionality with helper functions.

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/store/Contacts.js

Building an Email Client from Scratch - Part 1

Ext.define(‘ExtMail.store.Contacts’, {

extend: ‘Ext.data.Store’,
alias: ‘store.Contacts’,
model: ‘ExtMail.model.Contact’,

autolLoad: true,

proxy: {
type: ‘ajax’,
url: ‘data/contacts.json’,
reader: {
type: ‘json’,

rootProperty: ‘rows’

Labels
store/Labels.js

As we mentioned before the Labels are set out in a tree structure. To achieve this we must
use the ‘Ext.data.TreeStore’ base class which allows the nested data to be read and stored

correctly. Like the regular store we include an ‘alias’, ‘model’ and ‘proxy’. We also add a
‘root’ configuration which defines what the root node of the tree looks like and will be where all

the loaded data branches off from.

Ext.define(‘ExtMail.store.Labels’, {

extend: ‘Ext.data.TreeStore’,

https://github.com/Stuart98/ext-mail/blob/sencha-cafe-01/ext-mail/app/store/Labels.js

Building an Email Client from Scratch - Part 1

alias: f‘store.Labels’,

model: ‘ExtMail.model.Label’,

root: {
name: ‘Test’,

expanded: true

b

proxy: {
type: ‘ajax’,

url: ‘data/labels.json’

Learn to create data stores

Building an Email Client

Using Senc

Part 1 Watch this Section!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashwarth (MVYP)

https://youtu.be/-VF279ykDVQ?t=1036
https://youtu.be/-VF279ykDVQ?t=1036
https://youtu.be/-VF279ykDVQ?t=1036
https://www.youtube.com/watch?v=-VF279ykDVQ

Building an Email Client from Scratch - Part 1 * Sencha [

Creating Common View Controller

Next we set up our main View Controller class. We are aiming to share as much code as

possible between our Classic and Modern toolkit applications so we start by creating a base
View Controller that will be extended by each of the toolkits so toolkit-specific logic can be

added when needed.

We already have a ‘view/main/MainController.js’ file which we will rename to
‘MainControllerBase.js’ and update its contents appropriately:

Ext.define(‘ExtMail.view.main.MainControllerBase’, {

extend: ‘Ext.app.ViewController’

HE

We can then create our toolkit MainController classes in the toolkit folders and define them as

extending this base class.

Ext.define(‘ExtMail.view.main.MainController’, {

extend: ‘ExtMail.view.main.MainControllerBase’,

alias: ‘controller.main’

HE

Note that we move the ‘alias’ to the sub-class so that we can reference it rather than the base-
class. This is used in the *Main.js’ class to link the two together.

Ext.define(‘ExtMail.view.main.Main’, {
extend: ‘Ext.panel.Panel’,

xtype: ‘app-main’,

fq Sencha

requires: [

‘ExtMail.view.main.MainController’

I,

controller: ‘main’,

hE

As we said before the loader will initially look for the ‘MainControllerBase’ class in
the classic toolkit's ‘view/main’ folder but when it isn't found it will look in the shared

‘app’ folder.

Ext.define('ExtMail

extend: 'Ext.app
alias:

requires:

Learn how to create a common
Building an Email Client . VieW controller

U?\iﬂ_’j Sencl| é =
Part 1 .
Watch this Step!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashwao

https://youtu.be/-VF279ykDVQ?t=1256
https://youtu.be/-VF279ykDVQ?t=1256
https://youtu.be/-VF279ykDVQ?t=1036
https://www.youtube.com/watch?v=-VF279ykDVQ

Building an Email Client from Scratch - Part 1 ’ SenCha

Creating Common View Model

The main View Model will be used to store the bulk of the application’s state. This state will be
common between the Classic and Modern toolkits so we can elevate that to the shared ‘app’
folder and only define it once.

In our application there won't be any toolkit specific state to store but if there was you
could follow a similar pattern to the ViewController and create a base version which
would then be extended in each toolkit.

Ext.define(‘ExtMail.view.main.MainModel’, {

extend: ‘Ext.app.ViewModel’,
alias: ‘viewmodel.main’,
requires: [

I,

b

formulas: {

b

b

constructor: function() {

this.callParent(arguments);

- ~ SenCha Building an Email Client from Scratch - Part 1

“data’

The data property holds an object with simple key/value pairs of state data. These items can be
bound to our views and updated during user interaction. Often this will be small pieces of state
data or simple collections of data items.

“formulas”
These are calculated fields that are linked to ‘data’ properties or other ‘formulas’ and are re-

evaluated if any of the linked fields’ values change.

“stores”
The 'stores’ object has definitions for stores that will be instantiated in the View Model and can

be bound to view components.

Finally, our constructor is where we can set up any other bindings and event handlers on our
View Model or stores.

vors QI

20

vy W - " | 1
Dot faeget 10 by & hirthduy pressnt far mum Somarrow. ... | kn Hey Woggle, how you doinl?!

& Tod Hastamd a1, W
FOLDER

DEMERAL

Learn how to create a common
Building an Email Client P ViEW mode|

Using Senc
Part 1 Watch this Section!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuar

https://youtu.be/-VF279ykDVQ?t=1404
https://youtu.be/-VF279ykDVQ?t=1404
https://youtu.be/-VF279ykDVQ?t=1404
https://www.youtube.com/watch?v=-VF279ykDVQ

fq Sencha

Messages Store

The main store in our applications is the one that will load and contain our list of messages. We
define this by adding a key to our ‘stores’ object and giving it a configuration object. This key

will be the name we use when binding the store to any view component.

stores: {

messages: {

type: ‘Messages’

b

- \§ SenCha Building an Email Client from Scratch - Part 1

Creating the Messages Grid

Now that we have the code set up to support our views we can create a grid to render our
Messages to the screen. We start by creating a ‘ExtMail.view.messages.MessageGrid’ class in
our Classic toolkit folder.

Ext.define(‘ExtMail.view.messages.MessageGrid’, {
extend: ‘Ext.grid.Panel’,

alias: ‘widget.messages-MessageGrid’

HE

«d Create / Edit Email Message

ubject & Lecknd? Lecked Date Srwation Date Modified Date Aetlvate

This is a test 5 [QXZHANT
Burey Monkey Tes! el s Tt NE26E0T D667
List af Masd Merge Tags den fes TRAEIT nFz4EntT a7z
Lizt of Masl Merge Tags 2t s oFiza? [T
Your rem POH account has been activated 2 i M1AZ0TE mnazna
EAOL Fincaive e = CHEERME D201 naEETa
sn0U ol FRlehe Ser 5 DARERTE 4262010 04018

Eranga Tesl 5 wnoEE D018 05nRME

Discover how to create the
Building an Email Client = messages grid

Using Senc
Part 1 Watch this Phase!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=1578
https://youtu.be/-VF279ykDVQ?t=1578
https://youtu.be/-VF279ykDVQ?t=1578
https://www.youtube.com/watch?v=-VF279ykDVQ

Building an Email Client from Scratch - Part 1 ’ SenCha

Columns

A grid component needs to at least define the columns to show and a data store to render,
so we start by defining columns to show the message sender’s full name, the subject and
the sent date.

columns: [
{
dataIndex: €‘fullName’,
minWidth: b
header: false,

tdCls: ‘full-name’

dataIndex: ‘subject’,
flex: 1,

header: false

xtype: ‘datecolumn’,
dataIndex: ‘date’,
header: f‘Received’,
width: R

header: false,
align: ‘end’,

format: 5 M \'y’

’ SenCha Building an Email Client from Scratch - Part 1

If no ‘xtype’ is specified then a column will config will instantiate the “Ext.grid.column.Column’
class, but if we have a data type that needs special formatting we can use one of the various
sub-classes available.

We define the ‘datalndex’ to tell the column which property from the row’s record to display in
that cell.

The ‘datecolumn’ class is one of these sub-classes that allows us to define a ‘format’ which will
be used to output a formatted date into the grid cell.

With the columns defined we can drop our MessageGrid into our Main component and render
it to screen. We use the ‘messages-MessageGrid’ alias to add it to our Main component’s
‘items’ array.

Ext.define(‘ExtMail.view.main.Main’, {
extend: ‘Ext.panel.Panel’,

xtype: ‘app-main’,

requires: [

‘Ext.plugin.Viewport’,

‘ExtMail.view.main.MainController’,

‘ExtMail.view.main.MainModel’,

‘ExtMail.view.messages.MessageGrid’

P
plugins: ‘viewport’,

controller: ‘main’,

viewModel: ‘main’,

layout: {

type: ‘border’

b

items: [
{
xtype: ‘messages-MessageGrid’,

region: ‘center’

- ’ SenCha Building an Email Client from Scratch - Part 1

Binding to a Data Store

All we need to do now is give the grid a data store to render. We do this using
the ‘bind’ config and pass it the name of the store we created in our View
Model earlier.

xtype: ‘messages-MessageGrid’,
region: ‘center’,
bind: {

store: ‘{messages}’

@ localhost: 1B41/ext-ma

Building an Email Client from Scratch - Part 1 * Sencha [

Styling Specific Rows

At the moment we can't differentiate between read and unread messages in our grid, so we
want to make the unread messages bold. To do this we add a ‘getRowClass’ method to the
‘viewConfig’ configuration object.

viewConfig: {
getRowClass: function(messageRecord) {

var cls = [];

if (messageRecord.get(‘unread’)) {

cls.push(‘unread’);

return cls.join(®’,);

This function should return a string containing one or more CSS classes that will be applied to
the row’s HTML element. In this case, we want to add the ‘unread’ class if the record’s ‘unread’
property is true. We couple this with some custom styling added to an SCSS file located in
‘MessageGrid.scss’ as a sibling to the ‘MessageGrid.js’ file. Sencha Cmd will automatically
detect this file and compile its contents into CSS.

.message-grid {
.unread {
.X-grid-cell-inner {

font-weight: bold;

§ Sencha

We also add the ‘message-grid’ CSS class to the grid so we can keep our CSS rules scoped to

that component.

Bailey Muselli Morbi quis tortor id nulla ultrices aliquet. 29 Nov ‘21
Fred McGaugie Donec dapibus. 29 Nov ‘21
Dede Gayforth Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. 29 Aug '21
Shel Roddie Quisque erat eros, viverra eget, congue eget, semper rutrum, nulla. 24 Aug '21
rl Matthiesen Quisque eral erns, viverra eget, congu rriper rurrem, nulla 15 Aug 2

Elisa Coolican Curabitur gravida nisi at nibh. 1 Jul ‘21
Welbie Custed de justo, lacinia eget dunt eg il d in 'z
Ricardo Tullot Nam tristique tortor eu pede. 21 May '21

2L, pulvinar sed, nisl. £ viay

anith Hanny

Anetta Fendley Prain leo odio, porttitor id, cansequat in, can: ut, null

Arin Kingsnod Vivamus vestibulum sagittis sapien. 13 jJan ‘21
Shelbi Banford Maecenas ut massa quis augue luctus tincidunt. 4Jan '21
Alanson Hawkin Nulla ac enim. 3Jan'21

EXT-MAIL

Building an Email Client from Scratch - Part 1 ~ SenCha -

Creating the Message Reader

With the Message Grid in place, we want to be able to click a message and be taken to a new
screen which will display the message in full.

We create a new class called ‘ExtMail.view.reader.MessageReader’ extending the ‘Ext.Panel’
class and giving it a basic HTML template string to display the message details.

Ext.define(‘ExtMail.view.reader.MessageReader’, {
extend: ‘Ext.panel.Panel’,
alias: ‘widget.reader-MessageReader”’,

cls: ‘message-reader’,
tpl: [
‘«div class="subject”>{subject}</div>’,
?div class="’info0”’>’,
¢ <div class="sender”>’,
¢ {fullName} ({e-
mail})’,
¢ </div>’,
¢ <div class="date”>{date:date(*“D, j M Y, H:i”)}</div>’,
</div>?,

‘«div class="message”>{message}</div>’

1,
data: {}

K

The ‘tpl’ config is turned into an ‘Ext.XTemplate’ instance and can be defined as a
String or an Array of Strings. We can also pass an object as the array's last.

We couple this with an SCSS file alongside it with the same name- ‘MessageReader.scss’ -
which will give us some nice styling for each of the details:

’ SenCha Building an Email Client from Scratch - Part 1

.message-reader {
padding: g

.subject {
font-size:
font-weight: bold
margin-bottom:

}

.info {
display: flex;

.sender {
flex: 3;

.name {
font-weight: bold;

}

}

.message {
font-size:
margin:

Explore how to create the
Building an Email Client P message reader

Using Senc “
Pat 1 g Watch this Step!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashwaorth (MYE)

https://youtu.be/-VF279ykDVQ?t=2254
https://youtu.be/-VF279ykDVQ?t=2254
https://youtu.be/-VF279ykDVQ?t=2254
https://www.youtube.com/watch?v=-VF279ykDVQ

Building an Email Client from Scratch - Part 1 ’ Sencha

Showing the Message Details

Now we can set up our app to switch to the MessageReader component when the user clicks a
MessageGrid row.

First, we must create a wrapping component in our Main component allowing us to flip
between the Grid and Reader and only have one on-screen at a time. To do this we use the
Card layout.

xtype: ‘panel’,
region: ‘center’,
layout: ‘card’,
reference: ‘messagesWrapper”’,
items: [
{
xtype: ‘messages-MessageGrid’,
bind: {

store: ‘{messages}’

xtype: ‘reader-MessageReader’,
bind: {

data: ‘{selectedMessage}’

We bind the MessageReader’s ‘data’ property (which is merged with the ‘tpl’) to the
‘selectedMessage’ data property. This property is defined on the MainViewModel and will
track the Message record that has been clicked on. We default this to ‘null’.

- * SenCha Building an Email Client from Scratch - Part 1

data: {
selectedMessage: null

We can now use the ‘itemclick’ event of the grid to handle a user clicking on a message.
We attach a handler to the event and attach it to a method that we will define in the
MainControllerBase class using a string.

xtype: ‘messages-MessageGrid’,
bind: {
store: ‘{messages}’

b

listeners: {
itemclick: ‘onMessageClick’

In the ‘onMessageClick’ function we're going to set the ‘selectedMessage’ with the Message
record that was clicked.

onMessageClick: function(grid, messageRecord, rowEl, index, e) {

this.getViewModel().set(‘selectedMessage’, messageRecord);

Finally, we need to tell the card layout to switch between the Grid and the Reader when the
‘selectedMessage’ property has a value. To do this we define a ‘*formula’ which will return
the index of the card we want to display, i.e. 0 (the Message Grid) when ‘selectedMessage’ is
empty, and 1 (the Message Reader) when ‘selectedMessage’ has a value.

Building an Email Client from Scratch - Part 1 * Sencha [

messageCardIndex: function(get) {

return get(‘selectedMessage’) ?

By using the passed in ‘get’ function to lookup values that we want the formula to react
to, the framework will always reevaluate the formula if these data properties change

We can take this formula and bind it to the wrapper component’s ‘activeltem’ property. This
means that the change in the ‘'selectedMessage’ property will trigger the card layout to change.

bind: {

activeItem: ‘{messageCardIndex}’;

e

Lacie Gymilett Cum sociis natogue penatibus et magnis dis parturient montes, nascetur ndiculus mus.
Cesaro Martinalll Marbi vestibulum, velit id pretium iaculis, diam erat fermentum justo, nec condimentumn Regue

Dianne Busfield Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Mauris v

Dellie Mckechnie Quisque id justo sit amet sapien dignissim vestibulum

Georges |aimez harbi quis tortor id nulla ultrices aliquet
Carline Seabourne Morbi porttitor lorem id ligula.
Say Rubinchik Mulla neque libero, convallis eget, eleifend luctus, ultnicies eu, nibh.
Amalita Lubomirski Cras non velit nec nisi vulputate nonurmy.
Otis MchMorran Integer non velit.
- Ronda Bosward Prain leo odie, porttitor id, conseguat in, conseguat ut, nulia:
© Walentijn Seakes Duis at velit eu est congue elementum.

- Gibl Truitt Vestibulum guam sapien, varius ut, blandit non, interdum in, ante.

’ SenCha Building an Email Client from Scratch - Part 1

Creating a Dynamic Toolbar

We're now able to move to a Message and view its contents but we can’t yet move back again.

To solve this problem we will create a Toolbar whose contents will be dynamic and change
based on the current context.

For example: When on the Message Grid we want to show a Refresh button, but when on the
Message Reader we want to show a Back button.

We create a new class called ‘ExtMail.view.messages.MessageToolbar’ and extend the ‘Ext.
toolbar.Toolbar’ class.

Ext.define(‘ExtMail.view.messages.MessagesToolbar’, {
extend: ‘Ext.toolbar.Toolbar’,

alias: ‘widget.messages-MessagesToolbar’,

defaultListenerScope: true,
items: [
{
tooltip: ‘Refresh’,
iconCls: ‘x-fa fa-redo’,
handler: ‘onRefreshClick’,
bind: {
hidden: ‘{selectedMessage}’

tooltip: ‘Back’,
iconCls: ‘x-fa fa-arrow-left’,
handler: ‘onBackClick’,
hidden: true,
bind: {
hidden: ¢{!selectedMessage}’

Building an Email Client from Scratch - Part 1 * Sencha [

onRefreshClick: function () {

this.fireEvent(‘refresh’);

1

onBackClick: function () {
this.fireEvent(‘back’);

We create two buttons - a Refresh and a Back - and bind their *hidden’ property to the
‘selectedMessage’ value. This property will be evaluated as truthy or falsey so we can use
this to show and hide the buttons when a message is selected or not. For the Back button, we
negate the value using the I’ operator.

We define the *handler’ functions as strings that will reference the methods with these names
in the component. Each of these handler functions will raise a custom event that can be bound
to our parent component.

By setting the ‘defaultListenerScope’ to true the *handler’ values will be evaluated
within the context of the toolbar component. If this was set to false (or omitted) then
the component would look up the tree to a View Controller for methods with matching
names. This is useful if you want to try and keep your component self-contained.

Next we add the new toolbar as a ‘dockedltem’ of the wrapper component within our Main
class. By making it a docked component it will always be at the top of the view and will be
visible regardless of which of the cards is visible.

Building an Email Client from Scratch - Part 1

xtype: ‘panel’,
region: ‘center’,
layout: ‘card’,
reference: ‘messagesWrapper’,
bind: {
activeItem: ‘{messageCardIndex}’
b
dockedItems: [
{

xtype: ‘messages-MessagesToolbar’,
dock: ‘top’,
height: 56,
listeners: {
refresh: ‘onRefreshMessages’,

back: ‘onBackToMessagesGrid’

We can see our two custom events being referenced in the ‘listeners’ object and being given
handler functions that we will add in our MainControllerBase class.

// MainControllerBase.js
onRefreshMessages: function() {

this.getViewModel().getStore(‘messages’).reload();
b

Building an Email Client from Scratch - Part 1 \§ SenCha -

onBackToMessagesGrid: function() {
this.getViewModel().set(‘selectedMessage’, null);

}// MainControllerBase.js

onRefreshMessages: function() {
this.getViewModel().getStore(‘messages’).reload();

1

onBackToMessagesGrid: function() {

this.getViewModel().set(‘selectedMessage’, null);

The ‘onRefreshMessages’ method simply finds the ‘messages’ store in the View Model and
reloads it. This will automatically refresh the grid and display the original data.

The ‘onBackToMessagesGrid’ will reset the ‘selectedMessage’ state to null which will cause the
‘messageCardindex’ formula to reevaluate and change the card’s ‘activeltem’.

Ext Mall

[# compose €« B 0 =

B inbox (8)

B st Morbi quis tortor id nulla ultrices aliquet.
B e Bailey Muselli (brmuselid@inkedincom)

B orafts (1) Sed sagittis. Nam congue, risus semper ports volutpat, guam pede lobortis ligula, sit amet eleifend pede |

E Al mail (8) ectus. Pellentesaue at nulla. Suspendisse potenti. Cras in purus eu magna vulputate luctus.

B B User Labels

Learn how to create a dynamic
Building an Email Client /" (22} toolbar

Using Senc
Part 1 Watch this Stage!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://youtu.be/-VF279ykDVQ?t=2796
https://youtu.be/-VF279ykDVQ?t=2796
https://www.youtube.com/watch?v=-VF279ykDVQ

§ Sencha

Summary

We have demonstrated a lot of different aspects of Ext JS in this e-book
and have built the foundation upon which the rest of our Email Client Application
will be built.

We have created and modelled our data structures through Models

and Stores and hooking them up to a static backend through Proxies

and Readers. Following this, we set up our shared View Controller and View Model
to allow a cross-toolkit application to be easily built with the maximum possible
amount of code-sharing between the two.

We then started building the Classic toolkit's interface by making a Messages
Grid to display all of the loaded messages and a Message Reader to display the
full details of a message. These components took advantage of the data binding
options of the framework keeping the amount of code needed to a minimum and
maintaining a state-driven style of interface design.

Ext Mail

B inbox (=} Bailey Muselll Morbi quis tortor id nulla ultrices aliquet. 29 Nov '
Frod McGaugin Denec dapibus. 29 Nov ‘21

] Dede Gayforth Cum socils natogue penatibiss et magnis dis parturient montes, nascetur ridiculus mus, 20 aug 11

B Drafes (1) Shel Roddin Quisque erat eros, Viverra agot, CONEUR aget, semper rutrum, nulla. 24 Aug ‘21

B A mail (9

Elisa Coolican & il Ll 21
=

Ricarde Tullot

tibulum sagittis sapien.

53 quis augue huctus tincidunt

(I

& Sencha I

Thank you for reading!

Part-1 of Building an Email Client from Scratch

We hope you found it informative and helpful in your development projects. We have 6 more
parts lined up to take you through the entire process of building an email client from scratch.

Download the Part-2 of Building an Email Client
from Scratch

Click Here to Download Now!

https://www.sencha.com/products/extjs/evaluate/
https://img.en25.com/Web/Embarcadero/%7Bfb2f3f27-592d-405c-abc5-cc6821fa3377%7D_Building-an-Email-Client-from-Scratch-Part2.pdf

Try Sencha Ext JS

store: {
type: 'personnel’

Personnel.js ModernAppi/app/store
Ext.define('MedernAppl.store.Personne
extend: 'Ext.data.Store',

alias: 'store.personnel',
fields: [

‘name', 'email', 'phone’
1,

data: { items: [
{ name: 'Jean Luc', emai

Save time and money.

Make the right decision for your business.

MORE HELPFUL LINKS:

See It in Action

View the tutorials

https://www.sencha.com/products/extjs/evaluate/?utm_source=whitepaper&utm_medium=Email
https://www.youtube.com/channel/UC8uPlQw87Q7thRJY1leWZJw/videos
https://docs.sencha.com/extjs/7.6.0/guides/getting_started/getting_started_with_npm.html
https://examples.sencha.com/extjs/7.6.0/

