Building an Email
Client from Scratch
PART 5

Stuart Ashworth
Sencha MVP

Building an Email Client from Scratch - Part 5

This e-book series will take you through the process of building an email client from scratch,
starting with the basics and gradually building up to more advanced features.

PART 1: Setting Up the Foundations

Creating the Application and Setting up Data Structures and Components for Seamless Email
Management

PART 2: Adding Labels, Tree and Dynamic Actions to Enhance
User Experience

Building a Dynamic Toolbar and Unread Message Count Display for Label-Based Message
Filtering

PART 3: Adding Compose Workflow and Draft Messages

Streamlining Message Composition and Draft Editing for Seamless User Experience.

PART 4: Mobile-Optimized Email Client with Ext JS Modern Toolkit.

Creating a Modern Interface for Mobile Devices using Ext JS Toolkit

PART 5: Implementing a Modern Interface with Sliding Menu &
Compose Functionality

Implementing Modern toolkit features for the Email Client: Sliding Menus, Compose Button,
Forms, etc.

PART 6: Integrating with a REST API

Transitioning from static JSON files to a RESTful APl with RAD Server for greater scalability and
flexibility

PART 7: Adding Deep Linking and Router Classes to the Email
Client Application

Integrating Deep Linking with Ext JS Router Classes for Improved Application Usability

By the end of all the 7 series, you will have a fully functional email client that is ready to be
deployed in production and used in your daily life. So, get ready to embark on an exciting
journey into the world of email client development, and buckle up for an immersive learning
experience!

_

Building an Email Client from Scratch - Part 5 s

@ Tips for using this e-book

Start with Part-1 and work your way through each subsequent series in order. Each
series builds upon the previous one and assumes that you have completed the previous
part.

As you read each series, follow along with the code examples in your own development
environment. This will help you to better understand the concepts and see how they
work in practice.

Take breaks and practice what you have learned before moving on to the next series.
This will help to reinforce your understanding of the concepts and ensure that you are
ready to move on to the next step.

Don't be afraid to experiment and customize the code to meet your own needs. This will
help you to better understand the concepts and make the email client your own.

If you encounter any issues or have any questions, don't hesitate to reach out to the
community or the authors of the articles. They will be happy to help you and provide
guidance along the way.

Once you have completed all the series, take some time to review the entire email client
application and make any necessary adjustments to fit your specific needs.

Finally, enjoy the satisfaction of having built your own fully functional email client from
scratch using Ext JS!

1
2
3
4
5
6
7

Building an Email Client from Scratch - Part 5

Table of Contents

Executive Summary

Introduction

Creating the Labels Tree

Creating the Slide-out Menu Component
Adding the Menu to the App

Adding the App Logo

Adding a Floaring Compose Button
Creating the Compose Form

Integrating the Compose Form

Summary

Try Sencha Ext JS Free for 30 Days

12

15

16

20

24

26

28

Building an Email Client from Scratch - Part 5

Executive Summary

We continue implementing our Modern toolkit interface for our email client, bringing feature
parity between it and the Classic toolkit’s application.

We will create a tree component and add it to a native-like sliding menu, allowing users to
switch message categories. We will then create the Compose functionality with a floating
compose button and a Modern form.

All of these features will utilize the shared business logic and data models that we already have

in place.

Key Concepts / Learning Points

* Creating native-like sliding menusCreating Modern grid components
* Creating Tree components

* Creating Modern forms

* Overriding and expanding base class functionality

e —— Code along with Stuart!

Building an Email Client

Using Senc Start buddy coding with Stuart on-demand!
Part 5

V Use the bite-sized video links in this e-book to
S S B instantly watch the section you are reading.

https://www.youtube.com/watch?v=zRJTvw7t2FM

Introduction

In this article, we will be completing our implementation of the Modern toolkit interface for our

email client by adding a slide-out menu allowing users to switch between message categories.

We will then add Message composition to the application using a floating button and a new

compose form.

These two features will make use of the shared business logic we already have in place and

demonstrate just how powerful universal applications can be.

Code along with Stuart!

Building an Email Client

Using Senc} Start buddy coding with Stuart on-demand!
Part 5

Use the bite-sized video links in this e-book to
piuat s E) instantly watch the section you are reading.

https://www.youtube.com/watch?v=zRJTvw7t2FM

Building an Email Client from Scratch - Part 5 s

Creating the Labels Tree

The first thing we want to create is a tree component that will display all of the Message labels/
categories that we have and allow users to select one to show all of the messages that fall in

that category.

Inbox (9)

Starred

Sent

Drafts

All Mail (9)

N User Labels
N Home

Energy
Internet
Insurance
Tax

Newsletters

We will mirror the structure that the Classic toolkit has for the Labels Tree component and
create a new file called LabelsTree.js in the “view/labels™ folder. The class will be called
"ExtMail.view.labels.LabelsTree" and will extend the "Ext.list.Tree’ component.

s Building an Email Client from Scratch - Part 5

Ext.define (‘ExtMail.view.labels.LabelsTree’, {
extend: ‘Ext.list.Tree’,
alias: ‘widget.labels-LabelsTree’,

defaults: {

xtype: ‘treelistitem’,

textProperty: ‘combined’

We tell the component what “xtype " to use when creating an item in the tree - in this case

the based treelistitemm™ component and configure which field of the data model to display

for each item. We make use of the "combined " field we created previously which displays the
label name and the number of unread messages within it. This combined field also wraps it in
an HTML element with an “unread” CSS class so we can apply bold styling to it.

With that in mind, we must create a corresponding SASS file for the component where we will
put this custom styling. We create a file named "LabelsTree.scss™ as a sibling to the JS file and
add this style rule.

.unread {
font-weight: bold;

That is all the code we need to create a fully functioning tree component that will mirror that of
the Classic Toolkit app.

R e — Learn How to Create the Labels
Building an Email Client , Tree

Using Senc '
Part 5 o 'b Watch this Chapter!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashworth (MVP)

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

Building an Email Client from Scratch - Part 5 s

Creating the Slide-out Menu Component

We want the LabelsTree to appear in a slide-out menu component that is commonplace in
mobile applications. To do this we create a new component called *ExtMail.view.menu.Menu"
which will be attached to the main application viewport using the built-in “menu’ config.

The menu will be a simple "Ext.Panel” component with the LabelsTree component as its only
child item, using a “fit" layout.

Ext.define (‘ExtMail.view.menu.Menu’, {
extend: ‘Ext.panel.Panel’,

alias: ‘widget.menu-Menu’,

requires: [
‘ExtMail.view.labels.LabelsTree’

I

defaultlListenerScope: true,
scrollable: ‘vertical’,
layout: ‘fit’,
items: [
{
xtype: ‘labels-LabelsTree’,
style: {
background: ‘white’
s
bind: {
store: ‘{labels}’,
selection: ‘{selectedLabel}’
3y
listeners: ({
selectionchange: ‘onLabelSelectionChange’

when the selected label changes then we fire the "closemenu’

Building an Email Client from Scratch - Part 5

onLabelSelectionChange: function () {

this.fireEvent (‘cl menu’) ;

We bind the LabelsTree to the "labels” store found in our shared “MainViewModel™ and the
selected label to the “selectedLabel” data property.

We also listen for the “selectionchange ™ event and bind it to the “onLabelSelectionChange"
method which will fire the custom “closemenu” event that will allow us to ensure the menu is
closed once a new label has been selected.

Note that we set the "defaultListenerScope” to "true’ so the handler is resolved to the Menu
component, rather than to any attached View Controller.

The last thing we need to do to get this basic panel to behave as a menu is to add three getter
functions that will define how the menu behaves - the "getReveal ™ method decides whether
the menu is shown by the main component being moved out of the way, with the menu
underneath. The "getCover method defines whether the menu comes out and over the top of

the main component. Finally, the "getSide"™ method decides from which side of the screen the
menu sits.

In our case we want the menu to sit underneath the main component, on the left side, and be
revealed as the main component moves to the right.

getReveal: function () {
return true;

}y

getCover: function () {
return false;

}y

getSide: function () {

return ‘left’;

Learn How to Create the Slide-out
Building an Email Client Menu Component

Using Senclj
Part 5 _ Watch this Section!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashworth (MVP)

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

Building an Email Client from Scratch - Part 5

Adding the Menu to the App

The menu will be configured and created as part of the App’s launch process - in the
"Application.js file.

We start by creating a method called “setupMenu ™ which will create a new instance of our
"ExtMail.view.menu.Menu" class and attach it to the Viewport instance using the “setMenu”
method.

setupMenu: function () {
Ext.Viewport.setMenu (Ext.create (‘ExtMail.view.menu.Menu’, {
width: ,
viewModel: this.getMainView () .getViewModel (),
listeners: ({

closemenu: function() {
Ext.Viewport.hideMenu (‘left’);

We give the menu a fixed width of 250 pixels and pass in a reference to the Main View's
ViewModel so it shares the data modelling code we already have in place. By attaching the
Menu to the Viewport (as opposed to the Main view) it doesn’t become a child of the Main view
and so doesn't inherit access to its ViewModel. For this reason we must share its ViewModel
instance manually.

Lastly, we listen to the custom “closemenu’ event that we fire when a label is selected and tell
the menu to hide. We pass in “left” so it knows which menu to hide since we could have other

menus attached to the other sides of the viewport.

With the setup code in place we can execute the function during the app's launch process.

Building an Email Client from Scratch - Part 5 s

launch: function() {
this.setupMenu() ;
b

Adding a Menu Button

The menu now exists on the app but we don't have a way to open it. We want to add a new

button to our “MessagesToolbar™ which will show and hide the menu. We do this by overriding

the “buildltems™ method that lives in the base class, so we can add the menu button to that
array of items.

buildItems: function() {

var items = this.callParent (arguments) ;

add menu button to start of toolbar
items.unshift ({
xtype: ‘button’,
iconCls: ‘x-fa fa-list’,
bind: {
hidden: ‘{selectedMessage}’
}y
handler: this.onMenuButtonTap,
scope: this

});

return items;

}y

onMenuButtonTap: function() {
if (Ext.Viewport.getMenus () .left.isHidden ()) {
Ext.Viewport.showMenu (‘left’);
} else {
Ext.Viewport.hideMenu (‘left’);

Building an Email Client from Scratch - Part 5

First we call the base class’ “buildltems™ method using the "callParent™ function. This gets us
the output from the original function that we will modify with the Modern specific items.

From there we can add the menu button to the start of the array. We bind the “hidden" config
to the "selectedMessage ™ data property so that the menu is only visible when we are on the
list view.

Tapping on the button triggers the “onMenuButtonTap ™ function which hides the menu if it is
already visible, or shows it if it isn't.

Now we can open and shut our menu from the toolbar.

Inbox (9) —
Starred -
Sent .
en Bailey
Drafts ‘ Morbi (
Sed sa
All Mail (9)
A User Labels Fred !
Donec
A o
ome Duis bi
Energy
Internet Dede
‘ Cum s¢
Insurance In conc
Tax
Shel F
Newsletters ‘ .
Quisqu

I Avana

Discover How to Add the Menu to
the App

B sercha Cafe

Building an Email Client

Using Senc Watch this Part!
Part 5

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashwarth (MVP)

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

Building an Email Client from Scratch - Part 5 s

Adding the App Logo

To finish off the menu we will add our Ext Mail logo to the top of the menu as a docked
component.

Ext.define (‘ExtMail.view.menu.Menu’, {
extend: ‘Ext.panel.Panel’,

alias: ‘widget.menu-Menu’,

xtype: ‘component’,
docked: ‘top’,
style: {

textAlign: ‘center’,
}y

html: ‘<img src="resources/images/ext-mail-logo.

xtype: ‘labels-LabelsTree’,

P — Explore How to Add the App Logo

Watch this Step!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Building an Email Client

Using Senc
Part 5 ;

With Stuart Ashworth (MVP)

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

Building an Email Client from Scratch - Part 5

Add a Floating Compose Button

To trigger our compose workflow we're going to use a floating button in the lower right of our
screen which, when tapped, will open our compose form.

= C' 15 messages

Bailey Muselli 29 Nov 21

‘ Morbi quis tortor id nulla ultrices aliqu... ﬁ
Sed sagittis. Nam congue, risus semp...

Fred McGaugie 28 Nov '21
Donec dapibus. ¢
Duis bibendum. Morbi non quam nec d...

Dede Gayforth 29 Aug '21
Cum sociis natoque penatibus et magn... ﬁ
In congue. Etiam justo. Etiam pretium i...

Shel Roddie 23 Aug 21
. Quisque erat eros, viverra eget, congu... {f

Lorem ipsum dolor sit amet, consectet...

Merl Matthiesen 15 Aug '21

Quisque erat eros, viverra eget, ¢ R ¢
In quis justo. Maecenas rhonc

Elisa Coolican 1 Jul'21
Curabitur aravida nisi at nibh. «

We start by creating a sub-class of the "Ext.Button ™ class in a new namespace folder called
“compose ', called *ComposeButton . We configure this with a width, height, icon, and a
custom CSS class, along with the “floated: true ™ config which will tell the component to be

absolutely positioned on top of our interface.

Building an Email Client from Scratch - Part 5

Ext.define (‘ExtMail.view.compose.ComposeButton’, {
extend: ‘Ext.Button’,

alias: ‘widget.compose-ComposeButton’,

floated: true,

width: 7

height: 0

cls: ‘compose-button’,
iconCls: ‘x-fa fa-edit’

) ;

We also create a SASS file alongside it to give the button its appearance and positioning.

.compose-button.x-button {
background: g
border-radius: 3
position: absolute;
right: o
bottom:

.x—1con-el {

color:

Just like with the Menu component we will initialize this button in the “Application.js" file with a

“setupComposeButton™ method.

s Building an Email Client from Scratch - Part 5

setupComposeButton: function () {
this.composeButton = Ext.create(‘ExtMail.view.compose.ComposeButton’, {
hidden: false,
handler: function() {
this.getMainView () .getController () .onComposeMessage () ;
}y

scope: this

message list
this.getMainView () .getViewModel () .bind('{selectedMessage}’,

function (selectedMessage) {

if we’re animating to a message view screen then do composeButton
hide immediately,
otherwise we wait for the animation to complete and then toggle it.

var setDelay = selectedMessage ?
this.getMainView () .getLayout () .getAnimation () .getDuration () ;

setTimeout (Ext.bind (function () {
this.composeButton.setHidden (selectedMessage) ;
}, this), setDelay);
}, this);

In this method we create a new instance of the ComposeButton class and trigger the
“onComposeMessage ™ method of the Main View's controller when it is clicked.

We also bind to the “selectedMessage " property of the MainViewModel and hide the button
when moving from the list to the message details screen, and show it when moving back.

We perform this show/hide logic using a “setTimeout™ so it happens after the animation when

showing it, but immediately when hiding it.

We then call the “setupComposeButton™ method during the “launch™ process:

Building an Email Client from Scratch - Part 5 s

launch: function () {
this.setupMenu () ;
this.setupComposeButton () ;
b

Discover How to Add a Floating
Building an Email Client /[0 Compose Button

Using Senc .
Part5 Watch this Stage!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashworth (MVP)

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

s Building an Email Client from Scratch - Part 5

Creating the Compose Form

The Compose form that we created for the Classic toolkit has some logic that can be shared
with the Modern, namely the inline ViewModel, the button action handling and the recipient
details population. Unfortunately, the form fields themselves have slightly different APIs and so
can't be shared.

To enable this to be shared we need to create a base class which each toolkit's form will extend
from. We will create this in the "app " folder and call it “ComposeFormBase.js"

Ext.define (‘ExtMail.view.compose.ComposeFormBase’, {

extend: ‘Ext.form.Panel’,

viewModel: {
data: {
selectedRecipient: null,
b
}y

constructor: function () {

this.callParent (arguments) ;

when we select a
lastname and email from the record and put it into the message
this.getViewModel () .bind (
‘{selectedRecipient}’,
this.onSelectedRecipientChange,
this

s

onSendClick: function () {
this.fireEvent (‘send’, this.getViewModel () .get (‘messageRecord’)) ;

Hy

onDiscardClick: function () {
this.fireEvent (
‘discarddraft’,

this.getViewModel () .get (‘messageRecord’)

Building an Email Client from Scratch - Part 5 s

) 7
b o

onSelectedRecipientChange: function (selectedRecipientRecord)

var firstName, lastName, email;

/ 1if we have a recipient record then pull the properties
if (selectedRecipientRecord) {
firstName = selectedRecipientRecord.get (‘first name’);
lastName = selectedRecipientRecord.get(‘last name’) ;
email = selectedRecipientRecord.get (‘email’) ;

assign them to the messageRecord if we have one

if (this.getViewModel () .get (‘messageRecord’)) {

this.getViewModel () .get (‘messageRecord’) .set ({
firstName: firstName,
lastName: lastName,
email: email,

N

With this in place we can clean out the extracted code from the Classic toolkit's ComposeForm
component and change its base class to the new one we created.

We can then create our Modern ComposeForm with the same Recipient combobox, subject
field, and message text area. The action buttons are docked to the bottom of the form using

the modern pattern.

s Building an Email Client from Scratch - Part 5

Ext.define (‘ExtMail.view.compose.ComposeForm’, {
extend: ‘ExtMail.view.compose.ComposeFormBase’,

alias: ‘widget.compose-ComposeForm’,

defaultListenerScope: true, // makes
on this component
padding: 0
layout: {
type: ‘vbox’,
align: ‘stretch’
by
items:
{
xtype: ‘combobox’,
placeholder: ‘Recipient’,
displayField: ‘email’,
valueField: ‘email’,
queryMode: ‘local’,
required: true,
bind: {
store: ‘{contacts}’,
selection: ‘{selectedRecipient}’,

value: ‘{messageRecord.emaill}’

xtype: ‘textfield’,

placeholder: ‘Subject’,
bind: {

value: ‘{messageRecord.subject}’

xtype: ‘textareafield’,
placeholder: ‘Compose email’,
flex: ’

bind: {

value: ‘{messageRecord.messagel}’

xtype: ‘toolbar’,
docked: ‘bottom’,

Building an Email Client from Scratch - Part 5 s

margin:

items: [
{
xtype: ‘button’,
scale: ‘medium’,
text: ‘Send’,
handler: ‘onSendClick’

xtype: ‘button’,

iconCls: ‘x-fa fa-trash’,
tooltip: ‘Discard’,
handler: ‘onDiscardClick’

i

onSendClick: function() {
if (this.validate()) {
this.callParent (arguments) ;

We override the “onSendClick™ method to prevent the form from being submitted if it isn't
valid. This is handled in the Classic toolkit by the “formBind " config of the Send button but that
isn't available in the Modern toolkit.

Since the buttons use the same methods as the Classic toolkit's equivalent they will emit the
same custom events that can be handled by our MainController as needed.

B e e — Learn How to Create the
Building an Email Client .. Compose Form

Watch this Part!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Using Senc ‘
Part 5 ?

With Stuart Ashworth (MVP)

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

Building an Email Client from Scratch - Part 5

Integrating the Compose Form

With the Compose Form ready, we can integrate it into our app using the same pattern as we
did in the Classic toolkit.

We start by overriding the “showComposeWindow ™ method in our MainController class.
Here we want to set the ViewModel's “selectedMessage ™ property with the passed in

“messageRecord .

ge’, messageRecord) ;

Next we can update the “onSelectedMessageChange ™ handler function to move to the

ComposeForm if the selected message is a "draft .

onSelectedMessageChange: function (selectedMessage) {
if (selectedMessage && !selectedMessage.get (‘draft’)) {
this.getView () .push (this.getMessageDetailsConfig(selectedMessage)) ;
} else if (selectedMessage && selectedMessage.get (‘draft’)) {
this.getView () .push (this.getComposeMessageConfig(selectedMessage)) ;
} else {
this.getView () .pop () ;

Building an Email Client from Scratch - Part 5 s

The "getComposeMessageConfig"™ returns a basic config for the form where it hooks up the

"send” and "discarddraft’ events to their corresponding MainControllerBase methods and
sets up the form’s ViewModel with the Message record that has been passed in.

getComposeMessageConfig: function (messageRecord) {
return {
xtype: ‘compose-ComposeForm’,
viewModel: ({
data: {
messageRecord: messageRecord
}
Hy
listeners: ({
send: this.onSendMessage,
discarddraft: this.onDiscardDraftMessage,

scope: this

Again, this makes use of the shared functionality we have already in place and so we are just
hooking up the modern interface components with the business logic that should be triggered
by their events. Using custom events like this is a great way of normalizing the actions away
from the interface elements themselves.

- e —— Learn How to Integrate the
Building an Email Client ‘ Compose Form

Using Senc
Part 5 o ? Watch this Phase!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

With Stuart Ashworth (MVP)

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

Building an Email Client from Scratch - Part 5

SUMMARY

With these features in place we have a fully functional Modern email client
application with feature parity with its Classic counterpart.

We created a Labels tree within a sliding menu that gives the application a native-
like feel while using out-of-the-box components almost everywhere.

The created Compose form builds upon a shared base class so all toolkit-agnostic
code can be kept together with toolkit-specific APIs being used in the relevant sub-

classes.

Exi Mail
EI,‘ Compose (&

[1nbox (9) '+ Bailey Muselli Morbi quis tortor id nulla ultrices aliquet. 29 Nov 21
B starrec 4 Fred McGaugie Donec dapibus. 29 Nov'21
B sen ¢ Dede Gayforth Cum sociis natogue penatibus et magnis dis parturient mantes, nascetur ridiculus mus. 29 Aug ‘21
B orafts (1) ¢ Shel Roddie Quisque ra eget, congue eget, semper rutrum, nulla. 24 Aug'21

B Anmail) Merl Matthiesen Quisque ongue eget, semper rutrum, nula

5 Aug’2
B BS User Labels < Elisa Coolican Curabitur gravida nisi at nibh. 21
i Energy r Ricardo Tullot Nam tristique tortor eu pede. . -

] € pulvin| 1

Janith Hanny

ArinKingsnod Vivamus ve
¥ shelbi Banford Maecenas ut massa quis augue luctus tincidun

¢ Alanson Hawkin Nulla ac enim

Building an Email Client from Scratch - Part 5

Thank you for reading!

Part-5 of Building an Email Client from Scratch

We hope you found it informative and helpful in your development projects. We have 2
more parts lined up to take you through the entire process of building an email client from
scratch.

Download the Part-6 of Building an Email
Client from Scratch

Click Here to Download Now!

https://img.en25.com/Web/Embarcadero/%7Bc7b53c4f-1fcf-4244-ab58-e3e4b375de0e%7D_Building-an-Email-Client-from-Scratch-Part6.pdf

store: {

type: 'personnel’

Personnel.js ModernApp1/app/store
Ext.define('ModernAppl.store.Personnel’, {
extend: 'Ext.data.Store',

alias: 'store.personnel',

fields: [
‘name', ‘email’, ‘phone’
1,

data: { items: [
{ name: 'Jean Luc', email: "jeanluc.picard@enterprise.com",

pra
a Beverly spencer Betty Murphy

L] 70U~ TuATuT£G2CLOS
s e £DIMLTF6HOGE
10 % £ig6

~wsw

g1 2 < Nem

» i x5 7reuz
Laura Russell Stephen Morris i 2010 A o
e £ i
. P{ Yesermmersen
7
e : » -2eucys
- = WogsLuybby roong: u1s,*
% Heather Ford By Harry Tucker . ; -2sucps T
~ 0 TP
i {

® 12 Wewlz pogewybb™

Save time and money.

Make the right decision for your business.

MORE HELPFUL LINKS:

See It in Action

Read the Getting Started Guides ‘ SenCha

View the tutorials

https://www.sencha.com/products/extjs/evaluate/?utm_source=Eloqua&utm_medium=Email&utm_content=Building%20an%20Email%20Client%20from%20Scratch%20-%20Part%201&utm_campaign=whitepaper
https://www.sencha.com/products/extjs/evaluate/?utm_source=Eloqua&utm_medium=Email&utm_content=Building%20an%20Email%20Client%20from%20Scratch%20-%20Part%201&utm_campaign=whitepaper
https://examples.sencha.com/extjs/7.6.0/
https://docs.sencha.com/extjs/7.6.0/guides/getting_started/getting_started_with_npm.html
https://www.youtube.com/channel/UC8uPlQw87Q7thRJY1leWZJw/videos

