
Building an Email
Client from Scratch

Stuart Ashworth
Sencha MVP

PART 5

This e-book series will take you through the process of building an email client from scratch,

starting with the basics and gradually building up to more advanced features.

By the end of all the 7 series, you will have a fully functional email client that is ready to be

deployed in production and used in your daily life. So, get ready to embark on an exciting

journey into the world of email client development, and buckle up for an immersive learning

experience!

PART 1: Setting Up the Foundations
Creating the Application and Setting up Data Structures and Components for Seamless Email
Management

PART 2: Adding Labels, Tree and Dynamic Actions to Enhance
User Experience
Building a Dynamic Toolbar and Unread Message Count Display for Label-Based Message
Filtering

PART 3: Adding Compose Workflow and Draft Messages
Streamlining Message Composition and Draft Editing for Seamless User Experience.

PART 4: Mobile-Optimized Email Client with Ext JS Modern Toolkit.
Creating a Modern Interface for Mobile Devices using Ext JS Toolkit

PART 5: Implementing a Modern Interface with Sliding Menu &
Compose Functionality
Implementing Modern toolkit features for the Email Client: Sliding Menus, Compose Button,
Forms, etc.

PART 6: Integrating with a REST API
Transitioning from static JSON files to a RESTful API with RAD Server for greater scalability and
flexibility

PART 7: Adding Deep Linking and Router Classes to the Email
Client Application

Integrating Deep Linking with Ext JS Router Classes for Improved Application Usability

2

Building an Email Client from Scratch - Part 5

Start with Part-1 and work your way through each subsequent series in order. Each
series builds upon the previous one and assumes that you have completed the previous
part.

As you read each series, follow along with the code examples in your own development
environment. This will help you to better understand the concepts and see how they
work in practice.

Take breaks and practice what you have learned before moving on to the next series.
This will help to reinforce your understanding of the concepts and ensure that you are
ready to move on to the next step.

Don’t be afraid to experiment and customize the code to meet your own needs. This will
help you to better understand the concepts and make the email client your own.

If you encounter any issues or have any questions, don’t hesitate to reach out to the
community or the authors of the articles. They will be happy to help you and provide
guidance along the way.

Once you have completed all the series, take some time to review the entire email client
application and make any necessary adjustments to fit your specific needs.

Finally, enjoy the satisfaction of having built your own fully functional email client from
scratch using Ext JS!

Tips for using this e-book

1
2
3
4
5
6
7

3

Building an Email Client from Scratch - Part 5

4

Building an Email Client from Scratch - Part 5

Table of Contents
Executive Summary					 5

Introduction						 6

Creating the Labels Tree				 7

Creating the Slide-out Menu Component	 9

Adding the Menu to the App			 12

Adding the App Logo				 15

Adding a Floaring Compose Button		 16

Creating the Compose Form			 20

Integrating the Compose Form			 24

Summary						 26

Try Sencha Ext JS Free for 30 Days		 28

5

Building an Email Client from Scratch - Part 5

Key Concepts / Learning Points
• Creating native-like sliding menusCreating Modern grid components

• Creating Tree components

• Creating Modern forms

• Overriding and expanding base class functionality

Executive Summary

We continue implementing our Modern toolkit interface for our email client, bringing feature

parity between it and the Classic toolkit’s application.

We will create a tree component and add it to a native-like sliding menu, allowing users to

switch message categories. We will then create the Compose functionality with a floating

compose button and a Modern form.

All of these features will utilize the shared business logic and data models that we already have

in place.

Ready to dive in? Continue Reading and Watch the Tutorial

Code along with Stuart!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Start buddy coding with Stuart on-demand!
Part 5

https://www.youtube.com/watch?v=zRJTvw7t2FM

6

Building an Email Client from Scratch - Part 5

Introduction

Code along with Stuart!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Start buddy coding with Stuart on-demand!
Part 5

In this article, we will be completing our implementation of the Modern toolkit interface for our

email client by adding a slide-out menu allowing users to switch between message categories.

We will then add Message composition to the application using a floating button and a new

compose form.

These two features will make use of the shared business logic we already have in place and

demonstrate just how powerful universal applications can be.

https://www.youtube.com/watch?v=zRJTvw7t2FM

7

Building an Email Client from Scratch - Part 5

Creating the Labels Tree
The first thing we want to create is a tree component that will display all of the Message labels/

categories that we have and allow users to select one to show all of the messages that fall in

that category.

We will mirror the structure that the Classic toolkit has for the Labels Tree component and

create a new file called LabelsTree.js in the `view/labels` folder. The class will be called

`ExtMail.view.labels.LabelsTree` and will extend the `Ext.list.Tree` component.

8

Building an Email Client from Scratch - Part 5

Ext.define(‘ExtMail.view.labels.LabelsTree’, {
 extend: ‘Ext.list.Tree’,
 alias: ‘widget.labels-LabelsTree’,

 defaults: {
xtype: ‘treelistitem’,
textProperty: ‘combined’

 }
});

We tell the component what `xtype` to use when creating an item in the tree - in this case

the based `treelistitem` component and configure which field of the data model to display

for each item. We make use of the `combined` field we created previously which displays the

label name and the number of unread messages within it. This combined field also wraps it in

an HTML element with an `unread` CSS class so we can apply bold styling to it.

With that in mind, we must create a corresponding SASS file for the component where we will

put this custom styling. We create a file named `LabelsTree.scss` as a sibling to the JS file and

add this style rule.

.unread {
 font-weight: bold;
}

That is all the code we need to create a fully functioning tree component that will mirror that of

the Classic Toolkit app.

Learn How to Create the Labels
Tree

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Chapter!Part 5

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

9

Building an Email Client from Scratch - Part 5

We want the LabelsTree to appear in a slide-out menu component that is commonplace in

mobile applications. To do this we create a new component called `ExtMail.view.menu.Menu`

which will be attached to the main application viewport using the built-in `menu` config.

The menu will be a simple `Ext.Panel` component with the LabelsTree component as its only

child item, using a `fit` layout.

Creating the Slide-out Menu Component

Ext.define(‘ExtMail.view.menu.Menu’, {
 extend: ‘Ext.panel.Panel’,
 alias: ‘widget.menu-Menu’,

 requires: [
‘ExtMail.view.labels.LabelsTree’

],

 defaultListenerScope: true,
 scrollable: ‘vertical’,
 layout: ‘fit’,
 items: [

{
xtype: ‘labels-LabelsTree’,
style: {

background: ‘white’
},
bind: {

store: ‘{labels}’,
selection: ‘{selectedLabel}’

},
listeners: {

selectionchange: ‘onLabelSelectionChange’
}

}
],

 // when the selected label changes then we fire the `closemenu`
event

We bind the LabelsTree to the `labels` store found in our shared `MainViewModel` and the

selected label to the `selectedLabel` data property.

We also listen for the `selectionchange` event and bind it to the `onLabelSelectionChange`

method which will fire the custom `closemenu` event that will allow us to ensure the menu is

closed once a new label has been selected.

Note that we set the `defaultListenerScope` to `true` so the handler is resolved to the Menu

component, rather than to any attached View Controller.

The last thing we need to do to get this basic panel to behave as a menu is to add three getter

functions that will define how the menu behaves - the `getReveal` method decides whether

the menu is shown by the main component being moved out of the way, with the menu

underneath. The `getCover` method defines whether the menu comes out and over the top of

the main component. FInally, the `getSide` method decides from which side of the screen the

menu sits.

In our case we want the menu to sit underneath the main component, on the left side, and be

revealed as the main component moves to the right.

10

Building an Email Client from Scratch - Part 5

 onLabelSelectionChange: function() {
this.fireEvent(‘closemenu’);

 }
});

11

Building an Email Client from Scratch - Part 5

...
getReveal: function() {
 return true;
},
getCover: function() {
 return false;
},
getSide: function() {
 return ‘left’;
}
...

Learn How to Create the Slide-out
Menu Component

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Section!Part 5

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

The menu will be configured and created as part of the App’s launch process - in the

`Application.js` file.

We start by creating a method called `setupMenu` which will create a new instance of our

`ExtMail.view.menu.Menu` class and attach it to the Viewport instance using the `setMenu`

method.

Adding the Menu to the App

We give the menu a fixed width of 250 pixels and pass in a reference to the Main View’s

ViewModel so it shares the data modelling code we already have in place. By attaching the

Menu to the Viewport (as opposed to the Main view) it doesn’t become a child of the Main view

and so doesn’t inherit access to its ViewModel. For this reason we must share its ViewModel

instance manually.

Lastly, we listen to the custom `closemenu` event that we fire when a label is selected and tell

the menu to hide. We pass in “left” so it knows which menu to hide since we could have other

menus attached to the other sides of the viewport.

With the setup code in place we can execute the function during the app’s launch process.

12

Building an Email Client from Scratch - Part 5

...
setupMenu: function() {
 Ext.Viewport.setMenu(Ext.create(‘ExtMail.view.menu.Menu’, {

width: 250,
viewModel: this.getMainView().getViewModel(),
listeners: {

// close the menu when instructed
closemenu: function() {

Ext.Viewport.hideMenu(‘left’);
}

}
 }));
}
...

The menu now exists on the app but we don’t have a way to open it. We want to add a new

button to our `MessagesToolbar` which will show and hide the menu. We do this by overriding

the `buildItems` method that lives in the base class, so we can add the menu button to that

array of items.

Adding a Menu Button

13

Building an Email Client from Scratch - Part 5

...
launch: function() {
 this.setupMenu();
},
...

...
buildItems: function() {
 var items = this.callParent(arguments);

 // add menu button to start of toolbar
 items.unshift({

xtype: ‘button’,
iconCls: ‘x-fa fa-list’,
bind: {

hidden: ‘{selectedMessage}’
},
handler: this.onMenuButtonTap,
scope: this

 });

 return items;
},

onMenuButtonTap: function() {
 if(Ext.Viewport.getMenus().left.isHidden()){

Ext.Viewport.showMenu(‘left’);
 } else {

Ext.Viewport.hideMenu(‘left’);
 }
}

14

Building an Email Client from Scratch - Part 5

Discover How to Add the Menu to
the App

Watch this Part!
Part 5

First we call the base class’ `buildItems` method using the `callParent` function. This gets us

the output from the original function that we will modify with the Modern specific items.

From there we can add the menu button to the start of the array. We bind the `hidden` config

to the `selectedMessage` data property so that the menu is only visible when we are on the

list view.

Tapping on the button triggers the `onMenuButtonTap` function which hides the menu if it is

already visible, or shows it if it isn’t.

Now we can open and shut our menu from the toolbar.

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

Ext.define(‘ExtMail.view.menu.Menu’, {
 extend: ‘Ext.panel.Panel’,
 alias: ‘widget.menu-Menu’,

 ...

 items: [
{

xtype: ‘component’,
docked: ‘top’,
style: {

textAlign: ‘center’,
},
html: ‘’,

},
{

xtype: ‘labels-LabelsTree’,
...

},
],
 ...

});

15

Building an Email Client from Scratch - Part 5

To finish off the menu we will add our Ext Mail logo to the top of the menu as a docked

component.

Adding the App Logo

Explore How to Add the App Logo

Watch this Step!
Part 5

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

16

Building an Email Client from Scratch - Part 5

Add a Floating Compose Button

To trigger our compose workflow we’re going to use a floating button in the lower right of our

screen which, when tapped, will open our compose form.

We start by creating a sub-class of the `Ext.Button` class in a new namespace folder called

`compose`, called `ComposeButton`. We configure this with a width, height, icon, and a

custom CSS class, along with the `floated: true` config which will tell the component to be

absolutely positioned on top of our interface.

17

Building an Email Client from Scratch - Part 5

Ext.define(‘ExtMail.view.compose.ComposeButton’, {
 extend: ‘Ext.Button’,

 alias: ‘widget.compose-ComposeButton’,

 floated: true,
 width: 60,
 height: 60,
 cls: ‘compose-button’,
 iconCls: ‘x-fa fa-edit’
});

We also create a SASS file alongside it to give the button its appearance and positioning.

.compose-button.x-button {
 background: #d8372d;
 border-radius: 50%;
 position: absolute;
 right: 40px;
 bottom: 40px;

 .x-icon-el {
 color: #FFF;
 }
}

Just like with the Menu component we will initialize this button in the `Application.js` file with a

`setupComposeButton` method.

18

Building an Email Client from Scratch - Part 5

setupComposeButton: function() {
 this.composeButton = Ext.create(‘ExtMail.view.compose.ComposeButton’, {

hidden: false,
handler: function() {

this.getMainView().getController().onComposeMessage();
},
scope: this

 });

 // hide the composeButton when viewing/composing a message, show when
viewing
 // message list
 this.getMainView().getViewModel().bind(‘{selectedMessage}’,
function(selectedMessage) {

// if we’re animating to a message view screen then do composeButton
hide immediately,

// otherwise we wait for the animation to complete and then toggle it.
var setDelay = selectedMessage ? 0 :

this.getMainView().getLayout().getAnimation().getDuration();

setTimeout(Ext.bind(function() {
this.composeButton.setHidden(selectedMessage);

}, this), setDelay);
 }, this);
}

In this method we create a new instance of the ComposeButton class and trigger the

`onComposeMessage` method of the Main View’s controller when it is clicked.

We also bind to the `selectedMessage` property of the MainViewModel and hide the button

when moving from the list to the message details screen, and show it when moving back.

We perform this show/hide logic using a `setTimeout` so it happens after the animation when

showing it, but immediately when hiding it.

We then call the `setupComposeButton` method during the `launch` process:

19

Building an Email Client from Scratch - Part 5

Discover How to Add a Floating
Compose Button

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Stage!Part 5

...
launch: function() {
 this.setupMenu();
 this.setupComposeButton();
},
...

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

20

Building an Email Client from Scratch - Part 5

Ext.define(‘ExtMail.view.compose.ComposeFormBase’, {
 extend: ‘Ext.form.Panel’,

 viewModel: {
data: {

selectedRecipient: null,
},

 },

 constructor: function () {
 this.callParent(arguments);

 // when we select a recipient we need to extract the firstname,
lastname and email from the record and put it into the message

this.getViewModel().bind(
‘{selectedRecipient}’,
this.onSelectedRecipientChange,

 this
);

 },

 onSendClick: function () {
 this.fireEvent(‘send’, this.getViewModel().get(‘messageRecord’));

 },

 onDiscardClick: function () {
this.fireEvent(

‘discarddraft’,
this.getViewModel().get(‘messageRecord’)

Creating the Compose Form
The Compose form that we created for the Classic toolkit has some logic that can be shared

with the Modern, namely the inline ViewModel, the button action handling and the recipient

details population. Unfortunately, the form fields themselves have slightly different APIs and so

can’t be shared.

To enable this to be shared we need to create a base class which each toolkit’s form will extend

from. We will create this in the `app` folder and call it `ComposeFormBase.js`

21

Building an Email Client from Scratch - Part 5

);
 },

 onSelectedRecipientChange: function (selectedRecipientRecord) {
 var firstName, lastName, email;

 // if we have a recipient record then pull the properties from it
if (selectedRecipientRecord) {

firstName = selectedRecipientRecord.get(‘first_name’);
lastName = selectedRecipientRecord.get(‘last_name’);
email = selectedRecipientRecord.get(‘email’);

}

// assign them to the messageRecord if we have one
if (this.getViewModel().get(‘messageRecord’)) {

this.getViewModel().get(‘messageRecord’).set({
firstName: firstName,
lastName: lastName,
email: email,

});
}

 },
});

With this in place we can clean out the extracted code from the Classic toolkit’s ComposeForm

component and change its base class to the new one we created.

We can then create our Modern ComposeForm with the same Recipient combobox, subject

field, and message text area. The action buttons are docked to the bottom of the form using

the modern pattern.

22

Building an Email Client from Scratch - Part 5

Ext.define(‘ExtMail.view.compose.ComposeForm’, {
 extend: ‘ExtMail.view.compose.ComposeFormBase’,
 alias: ‘widget.compose-ComposeForm’,

 defaultListenerScope: true, // makes string method names resolve to methods
on this component
 padding: 10,
 layout: {

type: ‘vbox’,
align: ‘stretch’

 },
 items: [

{
xtype: ‘combobox’,
placeholder: ‘Recipient’,
displayField: ‘email’,
valueField: ‘email’,
queryMode: ‘local’,
required: true,
bind: {

store: ‘{contacts}’,
selection: ‘{selectedRecipient}’,
value: ‘{messageRecord.email}’

}
},
{

xtype: ‘textfield’,
placeholder: ‘Subject’,
bind: {

value: ‘{messageRecord.subject}’
}

},
{

xtype: ‘textareafield’,
placeholder: ‘Compose email’,
flex: 1,
bind: {

value: ‘{messageRecord.message}’
}

},
{

xtype: ‘toolbar’,
docked: ‘bottom’,

23

Building an Email Client from Scratch - Part 5

margin: 0,
items: [

{
xtype: ‘button’,
scale: ‘medium’,
text: ‘Send’,
handler: ‘onSendClick’

},
‘->’,
{

xtype: ‘button’,
iconCls: ‘x-fa fa-trash’,
tooltip: ‘Discard’,
handler: ‘onDiscardClick’

}
]

}
],

 onSendClick: function() {
 if (this.validate()) {

 this.callParent(arguments);
 }
 }
});

We override the `onSendClick` method to prevent the form from being submitted if it isn’t

valid. This is handled in the Classic toolkit by the `formBind` config of the Send button but that

isn’t available in the Modern toolkit.

Since the buttons use the same methods as the Classic toolkit’s equivalent they will emit the

same custom events that can be handled by our MainController as needed.

Learn How to Create the
Compose Form

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Part!Part 5

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

24

Building an Email Client from Scratch - Part 5

Integrating the Compose Form

With the Compose Form ready, we can integrate it into our app using the same pattern as we

did in the Classic toolkit.

We start by overriding the `showComposeWindow` method in our MainController class.

Here we want to set the ViewModel’s `selectedMessage` property with the passed in

`messageRecord`.

...
showComposeWindow: function(messageRecord) {
 this.getViewModel().set(‘selectedMessage’, messageRecord);
}
...

Next we can update the `onSelectedMessageChange` handler function to move to the

ComposeForm if the selected message is a `draft`.

...
onSelectedMessageChange: function(selectedMessage) {
 if (selectedMessage && !selectedMessage.get(‘draft’)) {

this.getView().push(this.getMessageDetailsConfig(selectedMessage));
 } else if(selectedMessage && selectedMessage.get(‘draft’)) {

this.getView().push(this.getComposeMessageConfig(selectedMessage));
 } else {

this.getView().pop();
 }
},
...

25

Building an Email Client from Scratch - Part 5

...
getComposeMessageConfig: function(messageRecord) {

 return {
 xtype: ‘compose-ComposeForm’,
 viewModel: {

data: {
messageRecord: messageRecord
}

 },
 listeners: {

send: this.onSendMessage,
discarddraft: this.onDiscardDraftMessage,
scope: this

 }
 };
}
...

The `getComposeMessageConfig` returns a basic config for the form where it hooks up the

`send` and `discarddraft` events to their corresponding MainControllerBase methods and

sets up the form’s ViewModel with the Message record that has been passed in.

Again, this makes use of the shared functionality we have already in place and so we are just

hooking up the modern interface components with the business logic that should be triggered

by their events. Using custom events like this is a great way of normalizing the actions away

from the interface elements themselves.

Learn How to Integrate the
Compose Form

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Phase!Part 5

https://www.youtube.com/watch?v=zRJTvw7t2FM&t=300s

26

Building an Email Client from Scratch - Part 5

SUMMARY
With these features in place we have a fully functional Modern email client

application with feature parity with its Classic counterpart.

We created a Labels tree within a sliding menu that gives the application a native-

like feel while using out-of-the-box components almost everywhere.

The created Compose form builds upon a shared base class so all toolkit-agnostic

code can be kept together with toolkit-specific APIs being used in the relevant sub-

classes.

27

Building an Email Client from Scratch - Part 5

Thank you for reading!
Part-5 of Building an Email Client from Scratch

We hope you found it informative and helpful in your development projects. We have 2

more parts lined up to take you through the entire process of building an email client from

scratch.

Download the Part-6 of Building an Email
Client from Scratch

 Click Here to Download Now!

https://img.en25.com/Web/Embarcadero/%7Bc7b53c4f-1fcf-4244-ab58-e3e4b375de0e%7D_Building-an-Email-Client-from-Scratch-Part6.pdf

Make the right decision for your business.

START YOUR FREE 30-DAY TRIAL

Save time and money.

Try Sencha Ext JS
FREE for 30 DAYS

View the tutorials

Read the Getting Started Guides

See It in Action

MORE HELPFUL LINKS:

https://www.sencha.com/products/extjs/evaluate/?utm_source=Eloqua&utm_medium=Email&utm_content=Building%20an%20Email%20Client%20from%20Scratch%20-%20Part%201&utm_campaign=whitepaper
https://www.sencha.com/products/extjs/evaluate/?utm_source=Eloqua&utm_medium=Email&utm_content=Building%20an%20Email%20Client%20from%20Scratch%20-%20Part%201&utm_campaign=whitepaper
https://examples.sencha.com/extjs/7.6.0/
https://docs.sencha.com/extjs/7.6.0/guides/getting_started/getting_started_with_npm.html
https://www.youtube.com/channel/UC8uPlQw87Q7thRJY1leWZJw/videos

