
Building an Email
Client from Scratch

Stuart Ashworth
Sencha MVP

PART 6

This e-book series will take you through the process of building an email client from scratch,

starting with the basics and gradually building up to more advanced features.

By the end of all the 7 series, you will have a fully functional email client that is ready to be

deployed in production and used in your daily life. So, get ready to embark on an exciting

journey into the world of email client development, and buckle up for an immersive learning

experience!

PART 1: Setting Up the Foundations
Creating the Application and Setting up Data Structures and Components for Seamless Email
Management

PART 2: Adding Labels, Tree and Dynamic Actions to Enhance
User Experience
Building a Dynamic Toolbar and Unread Message Count Display for Label-Based Message
Filtering

PART 3: Adding Compose Workflow and Draft Messages
Streamlining Message Composition and Draft Editing for Seamless User Experience.

PART 4: Mobile-Optimized Email Client with Ext JS Modern Toolkit.
Creating a Modern Interface for Mobile Devices using Ext JS Toolkit

PART 5: Implementing a Modern Interface with Sliding Menu &
Compose Functionality
Implementing Modern toolkit features for the Email Client: Sliding Menus, Compose Button,
Forms, etc.

PART 6: Integrating with a REST API
Transitioning from static JSON files to a RESTful API with RAD Server for greater scalability and
flexibility

PART 7: Adding Deep Linking and Router Classes to the Email
Client Application

Integrating Deep Linking with Ext JS Router Classes for Improved Application Usability

2

Building an Email Client from Scratch - Part 6

Start with Part-1 and work your way through each subsequent series in order. Each
series builds upon the previous one and assumes that you have completed the previous
part.

As you read each series, follow along with the code examples in your own development
environment. This will help you to better understand the concepts and see how they
work in practice.

Take breaks and practice what you have learned before moving on to the next series.
This will help to reinforce your understanding of the concepts and ensure that you are
ready to move on to the next step.

Don’t be afraid to experiment and customize the code to meet your own needs. This will
help you to better understand the concepts and make the email client your own.

If you encounter any issues or have any questions, don’t hesitate to reach out to the
community or the authors of the articles. They will be happy to help you and provide
guidance along the way.

Once you have completed all the series, take some time to review the entire email client
application and make any necessary adjustments to fit your specific needs.

Finally, enjoy the satisfaction of having built your own fully functional email client from
scratch using Ext JS!

Tips for using this e-book

1
2
3
4
5
6
7

3

Building an Email Client from Scratch - Part 6

4

Building an Email Client from Scratch - Part 6

Table of Contents
Executive Summary						 5

Introduction							 6

Creating a Base URL Utility Class 				 7

Hooking up the Contacts Store				 10

Loading the Labels Store					 12

Refactoring Message Labels				 14

Hooking up the Messages Store				 21

Saving Message Updates					 23

Summary							 25

Try Sencha Ext JS Free for 30 Days			 27

5

Building an Email Client from Scratch - Part 6

Key Concepts / Learning Points
• Using the rest proxy class

• Utilizing the transform config to ensure compatibility with the API

• Adding hasMany associations between two models and syncing those

associations with the API

Executive Summary

In this article, we will update our application to move from being backed by static JSON files to

integrating with a fully persistent REST API created with RAD Server.

We will update the proxy configurations of our stores and models to point to our new API and

ensure the data is compatible with the application through a series of transform functions.

We will also add a hasMany association between our Message and MessageLabel models so we

can handle the normalized data structure that our new API serves.

A utility class will also be added to enable the base URL that the application uses to be easily

switched based on the environment the application is running in.

Ready to dive in? Continue Reading and Watch the Tutorial

Code along with Stuart!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Start buddy coding with Stuart on-demand!
Part 6

https://www.youtube.com/watch?v=YWIQlk0azKs&t=1257s

6

Building an Email Client from Scratch - Part 6

Introduction

At the moment our application is just backed by static JSON files rather than a dynamic API.

Although the data is loaded via AJAX it is never persisted and will be reset when the browser is

refreshed.

We will be demonstrating how to update our data models and stores to handle loading and

saving to a REST API.

To do this we will be replacing our uses of the ajax proxy and replacing them with the rest

proxy class so our API calls follow the standard REST pattern.

Code along with Stuart!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Start buddy coding with Stuart on-demand!
Part 6

https://www.youtube.com/watch?v=YWIQlk0azKs&t=1257s

7

Building an Email Client from Scratch - Part 6

Creating a Base URL Utility Class

Before we update any of our stores we want to configure our application to make any AJAX

calls point to our RAD Server API. We could add the API url to each store and model but

that would be a lot of duplication and makes it hard to update when we deploy to different

environments.

So to do this we create a utility singleton class that will add a hook to the Ext.Ajax class so the

URL being called can be prefixed with our API’s base URL. This class can then be required at the

root of the application, attaching the hook before any stores or models are loaded.

Ext.define(‘ExtMail.util.BaseUrl’,{
 singleton : true,
 requires:[

‘Ext.Ajax’
],

 config: {
baseUrl: ‘’

 },

 constructor : function(config) {
this.initConfig(config);

Ext.Ajax.on(‘beforerequest’, this.onBeforeAjaxRequest,
this);
 },

 onBeforeAjaxRequest : function(connection, options) {
options.url = this.getBaseUrl() + options.url;

 }
});

8

Building an Email Client from Scratch - Part 6

We add this class to our shared app code in a new folder called util. We set it up as a singleton

and require the Ext.Ajax class because it is this class that we will add a global event handler.

We give it a single config of baseUrl which we will set with the API’s URL when the app

launches.

In the constructor, we set up the config and then add a handler to the Ext.Ajax class’

beforerequest event is fired when a request is about to be made.

In our handler, we simply update the url property of the request’s options and prefix it with the

contents of the baseUrl config. This ensures all Ajax calls go to our API.

> In larger applications this might be a bit heavy-handed as some Ajax calls might go to

different destinations so you might need to take that into consideration.

With the class in place it will be required automatically by our wildcard requires set up in the

app.js file.

Ext.application({
 extend: ‘ExtMail.Application’,

 name: ‘ExtMail’,

 requires: [
‘ExtMail.*’

],
...

With the class loaded (and instantiated, because it is a singleton) we can set the baseUrl in the

onBeforeLaunch function within the app.js so it is configured before any Ajax calls are made.

9

Building an Email Client from Scratch - Part 6

In a production application, you might pull this base URL from an environment config during

the build process so it is specific to a build environment.

With this in place, we can update our data stores to hit the endpoints within our API.

onBeforeLaunch: function() {
 ExtMail.util.BaseUrl.setBaseUrl(‘https://<your-base-url>/’);

 this.callParent(arguments);
}

Learn How to Create a Base URL
Utility Class

Watch this Chapter!
Part 6

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=YWIQlk0azKs&t=1257s
https://www.youtube.com/watch?v=YWIQlk0azKs&t=1257s

Hooking up the Contacts Store

The Contacts store is a simple one to start with as it is loaded when the application is launched

and doesn’t change throughout the app’s lifecycle.

The store’s proxy definition becomes this:

We start by swapping the proxy type from ajax to rest because we want our calls to use the

correct HTTP verb and to be constructed following the REST pattern.

The url can then be changed from pointing to the static json file to the actual REST endpoint, in

this case data/contacts. Remember, this will have the base URL prepended to it at the point the

request is launched.

The final update we have made is to include a transform function which is called once the

data is loaded and allows us to modify the data structure before it is pushed into the store.

This isn’t always necessary but in our case, we need to transform the data’s property names

from SNAKE_CASE to camelCase. This is purely to avoid us having to update the references to

the properties elsewhere in the application but is a good way to demonstrate how we might

handle this process.

10

Building an Email Client from Scratch - Part 6

proxy: {
 type: ‘rest’,
 url: ‘data/contacts/’,
 reader: {

type: ‘json’,
transform: function(data) {

return Ext.Array.map(data.result, ExtMail.util.Object.
snakeCaseToCamelCase);

}
 }
}

> The ExtMail.util.Object class is a basic utility class that can transform an object’s keys from

snake case to camel case and back again.

In some cases, you might have to use this transform hook to modify the data structure entirely

to suit your application’s data model.

This is all that is needed to have the store load from the REST API and the application will run

as it did before with the data now coming from a different source.

11

Building an Email Client from Scratch - Part 6

Learn How to Hook-up the
Contacts Store

Watch this Step!
Part 6

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=YWIQlk0azKs&t=1086s
https://www.youtube.com/watch?v=YWIQlk0azKs&t=1086s

12

Building an Email Client from Scratch - Part 6

Loading the Labels Store

Next we will hook the Labels store (which backs the tree view on the left side of the application)

into the API.

We follow exactly the same process as we did for the Contacts store, including adding a

transform step to update the object keys.

proxy: {
 type: ‘rest’,
 url: ‘data/labelsnested’,
 reader: {

type: ‘json’,
transform: function(data) {

 var transformRow = function(row) {
row = ExtMail.util.Object.snakeCaseToCamelCase(row);

if (row.children && Ext.isArray(row.children)) {
row.children = Ext.Array.map(row.children, transformRow);

}

 return row;
}

return Ext.Array.map(data, transformRow);
}

 }
}

First we switch the proxy type from ajax to rest, and then update the URL to use data/

labelsnested which will give our labels back in a tree structure, with child nodes inside a

property named children.

We then add an explicit JSON reader to the proxy so we can add a transform step.

13

Building an Email Client from Scratch - Part 6

Discover How to Load the Labels
Store

Watch this Part!
Part 6

In this case we need our transform to traverse down the tree processing every node. We

define a transformRow function which converts the object and then recurses down into its

children. This will then return us an array of labels and their children whose keys have all been

converted to camelCase.

That is all that is required to hook up the API and as you can see the most complex bit is the

transformation to make the data compatible with our existing application. Generally speaking,

this step would not be necessary.

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=YWIQlk0azKs&t=1536s
https://www.youtube.com/watch?v=YWIQlk0azKs&t=1536s

Ext.define(‘ExtMail.model.Message’, {
 extend: ‘Ext.data.Model’,

 requires: [
‘Ext.data.identifier.Sequential’,
‘ExtMail.store.MessageLabels’

],

 identifier: ‘sequential’,
 ...
});

14

Building an Email Client from Scratch - Part 6

Refactoring Message Labels

Before we can hook up the main Messages store we need to do some refactoring around how

messages are attached to labels. The new API now has the association normalized with an

intermediary message_labels database table, so we need to mirror this structure so we can

load and save new links with our front-end.

Updating the Message Model

We start by making some updates to the Message model. First, we change its automatic

ID generation scheme to use the Sequential class which gives us numeric IDs for any new

Messages that are created. We do this because the API uses numeric IDs and we want to mirror

its types.

Next we want to stop the labels field in the model from being saved to the server when the

Message details (content, recipient etc) are updated because the labels will be handled by a

new model we’ll add next.

{
 name: ‘labels’,
 type: ‘auto’,
 defaultValue: [],
 persist: false
}

hasMany: [
 {

model: ‘ExtMail.model.MessageLabel’,
name: ‘labels’,
storeConfig: {

type: ‘MessageLabels’,
},

 },
]

15

Building an Email Client from Scratch - Part 6

Now we can create a hasMany relationship on a Message linking it to any number of labels.

We use the hasMany config to define this relationship, which accepts an array of relationship

configurations.

A hasMany relationship essentially creates a sub-store on the model which holds a set of

associated model instances.

First we tell it what model class to use for each of the related entities. In this case, we reference

a new MessageLabel model. We define the key where the associated data will be found - in

our case the labels property. We can then provide it with some configuration details for how to

create the sub-store, which we want to be of type MessageLabels which is a new store we will

define now.

Ext.define(‘ExtMail.store.MessageLabels’, {
 extend: ‘Ext.data.Store’,

 alias: ‘store.MessageLabels’,

 model: ‘ExtMail.model.MessageLabel’,

 autoSync: true
});

16

Building an Email Client from Scratch - Part 6

This store is very simple and just describes the model it uses and is set up to automatically sync

when its contents change. This means it will send a request to the API when a label is added or

removed from a Message. In this case, we will define our proxy on the model definition.

The MessageLabel model has a simple structure with just two fields - the messageId and the

labelId it is joined to:

Ext.define(‘ExtMail.model.MessageLabel’, {
 extend: ‘Ext.data.Model’,

 fields: [
 ‘messageId’,
‘labelId’

]
});

Adding MessageLabels Store & MessageLabel Model

17

Building an Email Client from Scratch - Part 6

proxy: {
 type: ‘ajax’,
 noCache: false,
 url: ‘labels/’,
 actionMethods: {

create: ‘POST’,
destroy: ‘DELETE’,

 },
 writer: {

type: ‘json’,
writeAllFields: true,
transform: function (data) {

if (data) {
data = ExtMail.util.Object.camelCaseToSnakeCase(data);

}

return data;
},

 },
},

Next we add the proxy definition which defines how the label associations will be saved (added

or deleted).

The proxy is similar to the other ones with the url set to the “labels” endpoint. However, we

keep this one as an `ajax` type because we need to construct our URL manually, which we will

do at the end of this section. We set the HTTP verb that each action uses because our setup

differs slightly from the usual REST pattern.

The next thing we define is the writer config. We want it to write as JSON so we use the json

writer type and we want it to send all the data’s fields, regardless of what has changed, so we

set the writeAllFields property to true.

We then set up a transform function - which the outgoing data will be put through before it is

sent to the server - to turn the camelCase property names into SNAKE_CASE.

18

Building an Email Client from Scratch - Part 6

The final step is to configure the model’s URL with the correct URL which would normally be

done by the rest proxy but we want to combine multiple fields into the url which the rest proxy

won’t do out of the box.

For this reason, we call the proxy’s setUrl method in the constructor passing in the messageId

and labelId fields to give the URL the pattern of labels/<messageId>/<labelId>.

constructor: function () {
 this.callParent(arguments);

 this.getProxy().setUrl(
Ext.String.format(

‘labels/{0}/{1}’,
 this.get(‘messageId’),
this.get(‘labelId’)

)
);
}

In our Message model we have 3 utility methods for manipulating the labels ID array on the

model instance. Now that we have a hasMany association defined we need to query and

manipulate the sub-store that forms that association.

The sub-store can be accessed by calling a method named the same as the name config of our

association. We named our association labels so we can access the sub-store using the labels()

method, which returns a store instance - in our case an instance of the MessageLabels store.

The first method to update is the hasLabel method which can now use the findExact method of

the Store class to see if the label is already present. It will return the index of the record if it is

found, so if the returned index is greater than or equal to zero then it is present.

Updating the Message Label Utility Methods

19

Building an Email Client from Scratch - Part 6

Next we update the addLabel method so it performs an add operation to the association’s sub-

store.

hasLabel: function(labelId) {
 return this.labels().findExact(‘labelId’, labelId) >= 0;
}

addLabel: function(labelId) {
 var labels = this.get(‘labels’) || [];

 labels.push(labelId);

 this.set(‘labels’, Ext.clone(labels)); // clone so it triggers an update
on the record

 this.labels().add({
messageId: this.getId(),
labelId: labelId

 });
}

The add operation populates the two fields of the MessageLabel model - the messageId which

comes from the Message model instance we’re acting on, and the labelId that is passed in.

Finally, we update the removeLabel method to find the index of a record that has the given

labelId and then remove it from the sub-store.

20

Building an Email Client from Scratch - Part 6

removeLabel: function(labelId) {
 var labels = this.get(‘labels’) || [];

 labels = Ext.Array.remove(labels, labelId);

 this.set(‘labels’, Ext.clone(labels)); // clone so it triggers an update
on the record

 var index = this.labels().findExact(‘labelId’, labelId);

 this.labels().removeAt(index);
}

When these add or remove operations happen it will automatically sync to the API because we

set the autoSync: true config on the MessagesLabel store, meaning we don’t have to manually

trigger the sync to happen.

Explore How to Refactor Message
Labels

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Step!Part 6

https://www.youtube.com/watch?v=YWIQlk0azKs&t=1686s
https://www.youtube.com/watch?v=YWIQlk0azKs&t=1686s

21

Building an Email Client from Scratch - Part 6

Hooking up the Messages Store

Next we can configure the Messages store to load from the API. We make use of the rest proxy

and the api config to specify which endpoint we want to use for each of the CRUD operations.

proxy: {
 type: ‘rest’,
 noCache: false,
 api: {

read: ‘data/messagesfull’,
create: ‘data/messages/’,
update: ‘data/messages/’,
destroy: ‘data/messages/’,

 }
},

In this case we only want a different endpoint for the read operation but we still need to

specify the same one for all of the others.

Next we define the reader which once again needs a transform function defined to transform

the property names and also to convert the received array of label IDs into a structure

compatible with the MessageLabel model. So for each ID in the labels property, we turn it into

a simple object with the parent messageId and the labelId within it. These objects will then be

turned into MessageLabel model instances in the association’s sub-store.

22

Building an Email Client from Scratch - Part 6

This will often be unnecessary as the API would return the data in this structure already.

reader: {
 type: ‘json’,
 transform: function (data) {

if (data) {
if (Ext.isArray(data)) {

data = Ext.Array.map(
data,
ExtMail.util.Object.snakeCaseToCamelCase

);

// turn simple array of labelIds into MessageLabel object
Ext.each(data, function (row) {

row.labels = Ext.Array.map(
row.labels || [],
 function (labelId) {

 return {
messageId: row.id,
labelId: labelId,

};
}

);
});

} else {
data = ExtMail.util.Object.snakeCaseToCamelCase(data);

}
}

return data;
 },
},

Explore Hooking up the Messages
Store

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Phase!Part 6

https://www.youtube.com/watch?v=YWIQlk0azKs&t=2303s
https://www.youtube.com/watch?v=YWIQlk0azKs&t=2303s

23

Building an Email Client from Scratch - Part 6

The last step is to set up the Message writer to save changes to the Message models.

Saving the Message Updates

writer: {
 type: ‘json’,
 writeAllFields: true,
 transform: function (data) {

if (data) {
data = ExtMail.util.Object.camelCaseToSnakeCase(data);

delete data.ID;

 // format date as server expects
data.DATE = Ext.Date.format(

Ext.Date.parse(data.DATE, ‘c’),
‘m/d/Y H:i:s’

);
}

return data;
 },
},

We use a json writer and opt to include all fields in the request, even if they haven’t changed.

We also include a transform function that will, once again, convert the field names from

camelCase to snake_case. In addition to this, we delete the ID property as this is included in the

URL and we reformat the date field from a standard ISO format to a custom format that the

API expects.

With this setup, the Message data will get sent to the server and saved correctly. The only

problem that we will hit is that there will be a lot of AJAX calls sent when you type a new

message as each keystroke will trigger a save.

24

Building an Email Client from Scratch - Part 6

To prevent this we will introduce a buffer to the store’s sync method which will prevent any

repeat calls from being dispatched within a 500ms timeframe.

We do this by overwriting the sync function in the constructor with a new version of the

function returned by the Ext.Function.createBuffered method.

Learn How to Save Message
Updates

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Stage!Part 6

constructor: function () {
 this.callParent(arguments);

 // buffer sync operations so it doesn’t happen too many times in quick
succession
 this.sync = Ext.Function.createBuffered(this.sync, 500, this);
}

https://www.youtube.com/watch?v=YWIQlk0azKs&t=2546s
https://www.youtube.com/watch?v=YWIQlk0azKs&t=2546s

25

Building an Email Client from Scratch - Part 6

SUMMARY
With these relatively simple updates to our data models and stores, we have

successfully hooked our application up to a persistent backend API allowing our

application’s state to be saved.

We made use of transform functions to ensure compatibility between our

application and the API and refactored the way Messages and Labels are

associated so it is mirroring the normalized data structure that the API has

implemented.

We also created a utility class to ensure all AJAX calls are sent to the correct URL,

making it easy to switch between environments during the different stages of the

development cycle.

26

Building an Email Client from Scratch - Part 6

Thank you for reading!
Part-6 of Building an Email Client from Scratch

We hope you found it informative and helpful in your development projects. We have 1

more part lined up to take you through the entire process of building an email client from

scratch.

Download the Part-7 of Building an Email
Client from Scratch

 Click Here to Download Now!

https://img.en25.com/Web/Embarcadero/%7Bcd3dba89-c438-47e0-aa0f-ec41b117adc7%7D_Building-an-Email-Client-from-Scratch-Part7.pdf

Make the right decision for your business.

START YOUR FREE 30-DAY TRIAL

Save time and money.

Try Sencha Ext JS
FREE for 30 DAYS

View the tutorials

Read the Getting Started Guides

See It in Action

MORE HELPFUL LINKS:

https://www.sencha.com/products/extjs/evaluate/?utm_source=Eloqua&utm_medium=Email&utm_content=Building%20an%20Email%20Client%20from%20Scratch%20-%20Part%201&utm_campaign=whitepaper
https://www.sencha.com/products/extjs/evaluate/?utm_source=Eloqua&utm_medium=Email&utm_content=Building%20an%20Email%20Client%20from%20Scratch%20-%20Part%201&utm_campaign=whitepaper
https://examples.sencha.com/extjs/7.6.0/
https://docs.sencha.com/extjs/7.6.0/guides/getting_started/getting_started_with_npm.html
https://www.youtube.com/channel/UC8uPlQw87Q7thRJY1leWZJw/videos

