
Building an Email
Client from Scratch

Stuart Ashworth
Sencha MVP

PART 7

This e-book series will take you through the process of building an email client from scratch,

starting with the basics and gradually building up to more advanced features.

By the end of all the 7 series, you will have a fully functional email client that is ready to be

deployed in production and used in your daily life. So, get ready to embark on an exciting

journey into the world of email client development, and buckle up for an immersive learning

experience!

PART 1: Setting Up the Foundations
Creating the Application and Setting up Data Structures and Components for Seamless Email
Management

PART 2: Adding Labels, Tree and Dynamic Actions to Enhance
User Experience
Building a Dynamic Toolbar and Unread Message Count Display for Label-Based Message
Filtering

PART 3: Adding Compose Workflow and Draft Messages
Streamlining Message Composition and Draft Editing for Seamless User Experience.

PART 4: Mobile-Optimized Email Client with Ext JS Modern Toolkit.
Creating a Modern Interface for Mobile Devices using Ext JS Toolkit

PART 5: Implementing a Modern Interface with Sliding Menu &
Compose Functionality
Implementing Modern toolkit features for the Email Client: Sliding Menus, Compose Button,
Forms, etc.

PART 6: Integrating with a REST API
Transitioning from static JSON files to a RESTful API with RAD Server for greater scalability and
flexibility

PART 7: Adding Deep Linking and Router Classes to the Email
Client Application

Integrating Deep Linking with Ext JS Router Classes for Improved Application Usability

2

Building an Email Client from Scratch - Part 7

Start with Part-1 and work your way through each subsequent series in order. Each
series builds upon the previous one and assumes that you have completed the previous
part.

As you read each series, follow along with the code examples in your own development
environment. This will help you to better understand the concepts and see how they
work in practice.

Take breaks and practice what you have learned before moving on to the next series.
This will help to reinforce your understanding of the concepts and ensure that you are
ready to move on to the next step.

Don’t be afraid to experiment and customize the code to meet your own needs. This will
help you to better understand the concepts and make the email client your own.

If you encounter any issues or have any questions, don’t hesitate to reach out to the
community or the authors of the articles. They will be happy to help you and provide
guidance along the way.

Once you have completed all the series, take some time to review the entire email client
application and make any necessary adjustments to fit your specific needs.

Finally, enjoy the satisfaction of having built your own fully functional email client from
scratch using Ext JS!

Tips for using this e-book

1
2
3
4
5
6
7

3

Building an Email Client from Scratch - Part 7

4

Building an Email Client from Scratch - Part 7

Table of Contents
Executive Summary								 5

Introduction									 6

What is Deep Linking?							 7

Deep Linking & Ext JS							 9

Features of Ext JS Router							 10

Demonstration of Deep Linking in Email Client Application		 11

Adding Label Slug Field							 12

Adding Label Viewing Route						 13

Adding Message Viewing Route						 18

Adding Message Compose Route						 21

Ext Mail Application Home Screen					 25

Summary									 26

Try Sencha Ext JS Free for 30 Days					 28

5

Building an Email Client from Scratch - Part 7

Key Concepts / Learning Points
• Working with Ext JS router classes

• Refactoring our application to work with the new workflow using routes

• Added `beforè guards to our routes to ensure our app has data in it

before we proceed.

• Using named routes so we can have multiple active routes at any given

time

Executive Summary

This article sees us add deep linking to our Email Client application using Ext JS router classes.

We will add 3 routes to the application and refactor our app to use them and make our

application shareable and preserve state across refreshes.

Code along with Stuart!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Start buddy coding with Stuart on-demand!
Part 7

https://www.youtube.com/watch?v=E7Km4UhxwHY

6

Building an Email Client from Scratch - Part 7

Introduction

Code along with Stuart!

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Start buddy coding with Stuart on-demand!
Part 7

Up until this point, we’ve built our Email Client application under a single URL that doesn’t

change throughout the entire lifecycle of the application. This means that refreshing the

browser resets the app, losing the user’s place in the application.

In this article we will be adding Deep Linking support to the application so state is preserved,

URLs are shareable and the back button works as expected.

https://www.youtube.com/watch?v=E7Km4UhxwHY&t=302s
https://www.youtube.com/watch?v=E7Km4UhxwHY&t=302s

7

Building an Email Client from Scratch - Part 7

What is Deep Linking

Deep Linking refers to users being able to navigate directly to a section of your application via

the URL.

With traditional server-side rendered applications each section of the application would have

its own distinct URL so navigating directly to a particular section was trivial, for example, to go

directly to the Users section you might go to www.myapp.com/users.

However, modern web applications are often designed as Single-Page Applications (SPAs) so

the user never leaves the root page when moving through the application and so each section

doesn’t have a unique URL to navigate to.

With this pattern, we break the traditional concept of linking which is an integral part of the

web. It means that URLs can’t be shared and refreshing the browser will reset the application

to its base state, rather than taking the user back to where they were.

It also breaks the browser’s Back button functionality which is something most users rely on

and have a mental model of what to expect when clicking it. For example, if we navigate to

www.myapp.com from a Google search result screen, navigate to a section of the app and then

click the browser’s back button, we would get taken back to Google rather than back to the

starting page of the app. This is counterintuitive and can result in lots of frustration for users.

We will talk about bringing the concept of deep linking back to our single-page Ext JS

applications to make it easy and convenient for users to go directly to sections of our apps, and

navigate our web app as they do in other parts of the web.

https://www.myapp.com/users
https://www.myapp.com/users

8

Building an Email Client from Scratch - Part 7

• It maintains the web’s standard navigation concept, which users know and comes to expect.

• It keeps the back button working as expected.

• It allows specific sections of the app to be shared and bookmarked.

Explore What is Deep Linking

Watch this Chapter!
Part 7

Benefits of Deep Linking
The benefits of enabling deep linking in our applications are clear:

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=E7Km4UhxwHY&t=391s
https://www.youtube.com/watch?v=E7Km4UhxwHY&t=391s

9

Building an Email Client from Scratch - Part 7

Ext JS has a set of classes built into the framework that allows us to implement our own routing

within our application so deep linking is possible.

These classes fall under the `Ext.route` namespace and together they let us handle and make

URL changes as we move through our application.

The routing system doesn’t change the full URL but instead manipulates the URL’s hash value,

whose changes are reacted to by our application, triggering changes to the apps state.

For example, the URL for viewing a User with an ID of 123 might look like this: www.myapp.

com#user/view/123

Deep Linking & Ext JS

Explore Deep Linking & Ext JS

Watch this Step!
Part 7

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=E7Km4UhxwHY&t=619s
https://www.youtube.com/watch?v=E7Km4UhxwHY&t=619s

Features of Ext JS Router
Ext JS’ Router has a few key features that we will make use of in our demonstration application,

namely:

• We can define multiple parameters in each Route, for example, `user/:action/:id` would

parameterize the action and the id within the URL.

• It allows for optional parameters.

• We can validate the parameter values so we match the routes precisely. For example, we

might want an ID parameter to only be numeric and reject it if it doesn’t follow this pattern.

• With the nature of SPAs we might have multiple sections open in windows at a single time.

The Router supports multiple active routes at the same time to handle this.

• We can supply routes with ‘before’ guards to check the state of the application before

applying the route. This can be used for things like checking session state or if certain data

stores have been loaded yet.

10

Building an Email Client from Scratch - Part 7

Demonstration of Deep Linking in Email
Client Application

We will be demonstrating adding deep linking to our example Email Client application which

we’ve built over the course of this series. We will be adding 3 routes to the application to

handle navigation between labels, the viewing of a message, and the composing of a new

message.

These routes could be active at the same time and will allow the application to be returned to

the current state on refresh and navigated using the back button.

11

Building an Email Client from Scratch - Part 7

Discover Deep Linking in Email
Client Application

Watch This Part!
Part 7

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=E7Km4UhxwHY&t=826s
https://www.youtube.com/watch?v=E7Km4UhxwHY&t=826s

Adding Label Slug Field

Before we can add the first route we need to give each label a URL-friendly name since the

current names could contain mixed case, spaces, and special characters.

We do this by adding a new calculated field to the Label model which will take the label’s name

and normalise it into a slug that can be used in a URL.

It will convert the name to lowercase, replace space with hyphens and removes any special

characters (except hyphens).

We can now use this slug when referencing a Label in a URL.

12

Building an Email Client from Scratch - Part 7

...
{
 name: ‘slug’,
 calculate: function(data) {

return (data.name || ‘’).toLowerCase()
.replace(/ /g, ‘-’)
.replace(/[^\w-]+/g, ‘’);

 }
}
...

Discover How to Add a Label Slug
Field

Watch This Phase!
Part 7

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

https://www.youtube.com/watch?v=E7Km4UhxwHY&t=1002s
https://www.youtube.com/watch?v=E7Km4UhxwHY&t=1002s

Adding Label Viewing Route

Generally, we add our route definitions to View Controllers, which is what we will do here. We

will add a `routes` config to the `MainControllerBase` class and create a definition that will be

triggered to show a particular label.

...
routes: {

 ‘label/:label’: {
name: ‘label’,
before: ‘onBeforeViewLabel’,
action: ‘onViewLabel’

 }
},
...

The key for the route is the pattern that is used to match the URL and trigger the route to run.

We can add as many parameters as we like using the “:” prefix to the parameter name - these

values will then be passed to the `before` and `action` handlers.

In this case, we want to match the values such as “label/all-mail” and “label/starred” where we

use the second part to find and select the correct item in the tree, and subsequently filter the

messages list.

As we mentioned before we can have multiple active routes at the same time and this is why

we provide a `name` config which allows us to add, update or remove this particular route

while leaving the others untouched.

13

Building an Email Client from Scratch - Part 7

14

Building an Email Client from Scratch - Part 7

...
onBeforeViewLabel: function(label, action) {

 var labelsStore = this.getViewModel().getStore(‘labels’);

 if (labelsStore.loadCount > 0) {
action.resume();

 } else {
labelsStore.on(‘load’, function() {

action.resume();
}, this, { single: true });

 }
}
...

The `before` config allows us to provide a function that is called before the `action` and lets

us do any checks or setups before the route is fulfilled. This function has the ability to block

the route from running if certain criteria aren’t met - such as the user being logged out or not

having permissions.

In our case we use it to make sure we have the correct data loaded before proceeding.

The `before` method has two parameters - the first is the parameter we defined in the route,

and the second is an `Ext.route.Action` instance. If multiple parameters have been defined

then the first parameter would be an object containing each of the parameters with their name

as the key.

Our `onBeforeViewLabel` method checks to see if the `labels` store has been loaded already.

If it has, then we continue the route’s process by calling the action’s `resume` function. If it

hasn’t then we attach a handler to the store’s `load` event and only when it does load do we

continue with the route.

The route’s `action` config is the method that performs the work to update the interface

according to the route’s parameters. In this case, we want the UI to select the defined label.

...
onViewLabel: function(label) {

 var labelsStore = this.getViewModel().getStore(‘labels’);
 var labelRecord = labelsStore.findRecord(‘slug’, label);

 if (!labelRecord) {
labelRecord = labelsStore.first();

 }

 this.getViewModel().set(‘selectedMessage’, null);
 this.getViewModel().set(‘selectedLabel’, labelRecord);
}
...

15

Building an Email Client from Scratch - Part 7

We first have to find the corresponding Label record from the `labels` store (which we have

verified is loaded) based on the slug passed in. If we don’t find a match then we just select the

first one.

Next, we set the `selectedMessage` property to null so that we navigate back to the Messages

list if we happened to be viewing a message. Then we assign the Label to the `selectedLabel`

property. This will trigger the UI to change accordingly.

This setup works for when you load the application with a label in the URL but it won’t update

the URL as the user navigates to different labels by clicking the tree. To do this we have to

listen for the Label Trees `selectionchange` event and update the URL at that point.

We add an `onLabelSelectionChange` method to the MainControllerBase which will get the

`slug` from the selected record and redirect the browser to the right URL.

...
onLabelSelectionChange: function(labelTree, selectedLabelRecords) {
 var selectedLabelRecord = selectedLabelRecords[0]; // always use the first
one
 var slug = ‘’;

 // grab the ‘slug’ for the label
 if (selectedLabelRecord) {

slug = selectedLabelRecord.get(‘slug’);
 }

 this.redirectTo({
label: Ext.String.format(‘label/{0}’, slug), // redirect to the found

label
message: null // navigate away from a Message View route if we have

one, so we go back to the list view
 });
}
...

16

Building an Email Client from Scratch - Part 7

We get the selected label’s `slug` value and use the View Controller’s `redirectTo` method to

route to a new URL. This method can take an object whose keys correspond to the `name` we

gave to the route in the initial setup.

Here we want to change the `label` route to “label/” plus the selected Label’s slug.

We also want to remove any `message` route value (since we want to move back to the

Message list). We do this by setting its route to null.

> We can call the `redirectTo` method and pass a simple string with the new route we want to

move to (for example, `this.redirectTo(‘label/all-mail’);`) but this would clear any other routes

that are active at the time.

Finally we hook this handler up to the event LabelsTree’s configuration code.

17

Building an Email Client from Scratch - Part 7

...
{
 xtype: ‘labels-LabelsTree’,
 region: ‘west’,
 width: 300,
 bind: {

store: ‘{labels}’,
selection: ‘{selectedLabel}’

 },
 listeners: {

compose: ‘onCompose’,
selectionchange: ‘onLabelSelectionChange’

 }
}
...

With all of this code in place we can see the URL change as we navigate through the labels in

the application.

Explore How to Add Label
Viewing Route

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Step!Part 7

https://www.youtube.com/watch?v=E7Km4UhxwHY&t=1086s
https://www.youtube.com/watch?v=E7Km4UhxwHY&t=1086s

18

Building an Email Client from Scratch - Part 7

...
routes: {
 ...
 ‘view/:messageId’: {

name: ‘message’,
before: ‘onBeforeViewMessage’,
action: ‘onViewMessage’

 },
 ...
}
...

In this route we look for the string “view/123” where the “123” would be the ID of a Message

record in our `messages` store.

Again, we give it a name so we can modify it while maintaining any other existing routes, a

`before` hook and an `action` method.

Our `before` hook is identical to the Labels route where we check that the Messages store has

been loaded before continuing with the route.

Adding Message Viewing Route

Next we will follow a similar pattern to add a route that will handle the viewing of a particular

message.

We first add the new route definition to the `routes` config in the MainControllerBase.

19

Building an Email Client from Scratch - Part 7

...
onBeforeViewMessage: function(messageId, action) {

 var store = this.getViewModel().getStore(‘messages’);

 if (store.loadCount > 0) {
action.resume();

 } else {
store.on(‘load’, function() {

action.resume();
}, this, { single: true });

 }
}
...

The `onViewMessage` function then looks up the message ID in the `messages` store and

sets it as the `selectedMessage` property in the ViewModel.

If the Message record was not found then we clear the `message` route by calling the

`redirectTo` method and setting it to `null`.

...
onViewMessage: function(messageId) {

 var store = this.getViewModel().getStore(‘messages’);
 var messageRecord = store.getById(messageId);

 // if messageRecord is null then we reset it anyway
 this.getViewModel().set(‘selectedMessage’, messageRecord);

 // if we didn’t find a message record we reset the route
 if (!messageRecord) {

this.redirectTo({
message: null

});
 }
}
...

20

Building an Email Client from Scratch - Part 7

The last piece of the puzzle is to ensure that when a user interacts with the UI in order to view

a Message (i.e. clicks a row in the Messages grid) instead of setting the `selectedMessage`

property with the clicked item (like we do just now) but instead trigger the URL to change and

let the routing configuration pick it up and perform the UI transition.

This shift in the process is likely where you will need to alter your mindset and possibly refactor

areas of your application. We have to ensure that the routing handles all the changes in UI and

that the UI interactions simply trigger a route change (i.e. a URL redirect).

For the Message viewing, we must update the `handleMessageClick` method so it calls the

`redirectTo` method instead of setting the `selectedMessage` in the ViewModel. This logic is

now handled in the `onViewMessage` route handler function as we saw above.

...
handleMessageClick: function(messageRecord) {

 if (messageRecord.get(‘draft’)) {
this.showComposeWindow(messageRecord);

 } else {
this.redirectTo({

message: Ext.String.format(‘view/{0}’, messageRecord.getId())
});

 }
}
...

Explore How to Add Message
Viewing Route

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Stage!Part 7

https://www.youtube.com/watch?v=E7Km4UhxwHY&t=1879s
https://www.youtube.com/watch?v=E7Km4UhxwHY&t=1879s

21

Building an Email Client from Scratch - Part 7

Adding Message Compose Route

The third route we will add is one to handle the opening of the message compose form. For

this route we use the pattern “draft/<messageId>” - we don’t need a `before` guard so we just

define an `action` property and a name.

...
routes: {
 ‘draft/:messageId’: {

name: ‘draft’,
action: ‘onDraftMessage’

 }
}
...

The `onDraftMessage` handler simply grabs the Message record from the store and calls the

`showDraftWindow` function that we already have. It will also clear the `draft` route if the

Message record isn’t found.

22

Building an Email Client from Scratch - Part 7

Once again we need to update the code which currently triggers the Compose Window so that

it triggers the URL change instead of changing the UI directly.

In this case, we update the `onComposeMessage` method in the MainControllerBase class

and replace the call to `showDraftWindow` with a call to `redirectTo`.

...
onComposeMessage: function() {
 var messageRecord = Ext.create(‘ExtMail.model.Message’, {

labels: [ExtMail.enums.Labels.DRAFTS],
outgoing: true,
draft: true

 });

 messageRecord.addLabel(ExtMail.enums.Labels.DRAFTS);

 this.getViewModel().getStore(‘messages’).add(messageRecord);
 this.getViewModel().getStore(‘messages’).commitChanges(); // commit changes
immediately since we aren’t persisting to backend

...
onDraftMessage: function(messageId) {
 var messageRecord = this.getViewModel().getStore(‘messages’).
getById(messageId);

 if (!messageRecord) {
this.redirectTo({

draft: null
});

 } else {
this.showDraftWindow(messageRecord);

 }
}
...

23

Building an Email Client from Scratch - Part 7

 this.redirectTo({
draft: Ext.String.format(‘draft/{0}’, messageRecord.getId())

 });
},
...

We must also do the same in the code that handles a user clicking on a draft in the Messages

list. So the `handleMessageClick` function can be refactored to look like this:

...
handleMessageClick: function(messageRecord) {
 var destination = {};

 if (messageRecord.get(‘draft’)) {
destination = {

draft: Ext.String.format(‘draft/{0}’, messageRecord.getId())
};

 } else {
destination = {

message: Ext.String.format(‘view/{0}’, messageRecord.getId())
};

 }

 this.redirectTo(destination);
}
...

24

Building an Email Client from Scratch - Part 7

Learn How to Add Message
Compose Route

Use the bite-sized video links in this e-book to
instantly watch the section you are reading.

Watch this Part!Part 7

With the 3 routes set up now, we can see them in action within our application and even how

all 3 can be active at the same time as in the screenshot below.

https://www.youtube.com/watch?v=E7Km4UhxwHY&t=2226s
https://www.youtube.com/watch?v=E7Km4UhxwHY&t=2226s

25

Building an Email Client from Scratch - Part 7

Ext Mail Application Home Screen

26

Building an Email Client from Scratch - Part 7

We have now added support for deep linking to our application with 3 routes

supporting viewing labels, viewing messages, and viewing the draft window.

We coded them in a way that multiple routes are supported at once giving us fully

shareable URLs and making the app’s state persistent across page refreshes.

We also refactored our code so all UI navigation is handled by the routes and

any user interactions result in a route change, a tricky mindset to get into and

sometimes hard to implement after the fact.

Thank you for reading Part 7 of Building an Email Client from Scratch. We

hope that you found this series informative and helpful in your own email client

development project.

If you have any questions or feedback, please don’t hesitate to reach out to us.

We’re always happy to help and support you in your development journey. And if

you haven’t already, why not give it a try and start building your own email client

today? With the knowledge and insights gained from this e-Book series, you’ll be

well on your way to creating a successful and robust email client that meets the

needs of your users.

SUMMARY

27

Building an Email Client from Scratch - Part 7

Thank you for reading!
Part-7 of Building an Email Client from Scratch

We hope you found this series informative and helpful in your development projects.

Make the right decision for your business.

START YOUR FREE 30-DAY TRIAL

Save time and money.

Try Sencha Ext JS
FREE for 30 DAYS

View the tutorials

Read the Getting Started Guides

See It in Action

MORE HELPFUL LINKS:

https://www.sencha.com/products/extjs/evaluate/?utm_source=Eloqua&utm_medium=Email&utm_content=Building%20an%20Email%20Client%20from%20Scratch%20-%20Part%201&utm_campaign=whitepaper
https://www.sencha.com/products/extjs/evaluate/?utm_source=Eloqua&utm_medium=Email&utm_content=Building%20an%20Email%20Client%20from%20Scratch%20-%20Part%201&utm_campaign=whitepaper
https://examples.sencha.com/extjs/7.6.0/
https://docs.sencha.com/extjs/7.6.0/guides/getting_started/getting_started_with_npm.html
https://www.youtube.com/channel/UC8uPlQw87Q7thRJY1leWZJw/videos

